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Bayesian inference is applied to calibrate and quantify prediction uncertainty in a coupled multi-component
Hall thruster model. The model consists of cathode, discharge, and plume sub-models and outputs thruster
performance metrics, one-dimensional plasma properties, and the angular distribution of the current density
in the plume. The simulated thrusters include a magnetically shielded thruster operating on krypton, the
H9, and an unshielded thruster operating on xenon, the SPT-100, at pressures between 4.3—43 pTorr-Kr and
1.7-80 nTorr-Xe, respectively. After calibration, the model captures key pressure-related trends, including
changes in thrust and upstream shifts in the ion acceleration region. Furthermore, the model exhibits predictive
accuracy to within 10% when evaluated on flow rates and pressures not included in the training data, and can
predict some performance characteristics across test facilities to within the same range of conditions. Compared
to a previous model calibrated on some of the same data [Eckels et al. 2024], the model reduced predictive
errors in thrust and discharge current by greater than 50%. An extrapolation to on-orbit performance is
performed with an error of 9%, capturing trends in discharge current but not thrust. These findings are
discussed in the context of using data for predictive Hall thruster modeling in the presence of facility effects.

I. INTRODUCTION

Hall thrusters are the most widely-flown type of electric
spacecraft propulsion device, but despite their popular-
ity but they remain challenging to model. Predictive
models—those which can accurately predict the plasma
properties and global performance features of a thruster
from geometry and operating conditions alone—are a long-
standing goal of the Hall thruster modeling community.
Unfortunately, poorly-understood physical effects have
to date prevented such efforts from reaching fruition. In
addition to the well-known problem of anomalous cross-
field electron transport,! there are also many subtle and
hard-to-model interactions between a thruster and the
vacuum facility in which it is tested. These “facility
effects” lead to thrusters performing differently in con-
ditions attainable in on-ground facilities than they do
in space.?® These effects complicate efforts to correlate
ground test data with in-space performance, increasing the
expense of thruster development and qualification. In the
absence of physics-based models for the aforementioned
phenomena, engineering simulations of Hall thrusters rely
on phenomenological models with parameters that must
be calibrated to match data.® These modeling choices
introduce uncertainty which should be quantified.

To address this challenge, we apply a multidisciplinary
modeling approach. We model the thruster-facility sys-
tem in terms of a series of modular components which
interact via a limited set of coupling variables. We then
apply Bayesian inference to calibrate the coupled model
against data. Once calibrated, we make probabilistic pre-
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dictions at operating conditions and facilities outside of
those on which the model was trained. There are several
advantages to this approach. First, the modularity allows
new facility effects to be incorporated without changing
existing models. Models may likewise be upgraded or
replaced as improvements become available. Lastly, our
approach places uncertainty quantification in a central
role. As calibration is done probabilistically, we obtain
not just point estimates but full distributions of model
parameters and predictions of key quantities of interest.

In our 2023 paper,'? we used an previous version of
this model to calibrate the SPT-100 thruster across back-
ground pressures. While we obtained promising results
using a surrogate, predictive accuracy on held-out test
data for the model itself was larger than 30%, We take sev-
eral steps to address the limitations and outcomes of the
prior work, and we extend the analysis beyond the SPT-
100 and to new operating regimes. Specifically, we make
the following changes: 1) the computational expense of
the thruster discharge model has been reduced by greater
than 50%, which removes the need of a surrogate model
during the UQ analysis, 2) the Bayesian likelihood has
been updated to limit over-confidence in learned model
parameters, 3) the pressure-dependent models for neu-
tral ingestion, acceleration region shift, plume divergence
angle, and anomalous electron transport have been re-
vised to better match experimental trends, and to better
allocate model parameters.

These changes, particularly the updates to our mod-
eling assumptions, result in a model that agrees with
experimental data to within 10% for thrust and discharge
current, with similarly low errors observed for the ion
velocity, cathode coupling voltage, and plume ion cur-
rent density. These results improve upon our previous
work, in particular with respect to thrust and discharge
current where the model test errors were 30 and 53%,



respectively.'® We additionally simulate a magnetically-
shielded thruster and demonstrate similar performance
using less data.

This paper is organized as follows. First, in Sec. II, we
describe the component models, the experimental data,
and the methods we apply to calibrate the model. In
Sec. I, we demonstrate that our coupled system model
exhibits improved prediction accuracy and can extrap-
olate to a held-out validation dataset. Next in Sec. IV
we comment on the applicability of our results to Hall
thruster engineering design and consider the limitations
of our approach and possible avenues for improvement.
Finally, in Sec. V, we summarize our findings.

1. METHODS

In this section, we describe the models in the coupled
framework, the experimental data, the calibration proce-
dure, and the uncertainty quantification approach.

A. Model

The Hall thruster system model, depicted in schematic
form in Fig. 1, comprises an analytic cathode coupling
model,"' a one-dimensional fluid code for the main
thruster discharge,'? and an analytic model for the ex-
pansion of the plume into a vacuum chamber.!3 We
use these models to predict five quantities of interest
(Qols): thrust, discharge current, cathode coupling volt-
age, axially-resolved 1-D ion velocity, and the plume ion
current density.

As illustrated in Fig. 1, each component model influ-
ences different Qols. The cathode model computes the
cathode coupling voltage—the voltage needed to extract
cathode electrons into the Hall thruster discharge plasma.
This voltage determines the effective potential drop ap-
plied to the thruster model. The thruster model then
outputs the 1-D axial distribution of plasma properties in
the thruster discharge channel and near field plume, such
as the electron temperature and ion velocity, the discharge
current, ion current, and an “uncorrected” thrust. These
last two outputs pass to the plume component, which
models the angular distribution of the ion current density
at multiple distances downstream of the thruster. We
compute the divergence efficiency from this distribution
and then use this to “correct” the thrust to account for
divergence losses.

Each of the component models has a functional de-
pendence on the facility background pressure, enabling
the coupled system to capture a wide range of pressure-
dependent phenomena. We define the system model as

y = f(x) = [fi(x), f2(x), ..., fo(x)], (1)

where x and y are vectors containing all model inputs
and outputs, respectively and @ = 5 is the number of

Qols. We split the model inputs x into operating condi-
tions d and model parameters 6. Operating conditions
represent the experimental conditions at which the data
were obtained. These may be known to within some in-
herent, irreducible uncertainty (aleatoric uncertainty) due
to measurement precision or noise. In contrast, model
parameters are unknown a priori, and have uncertainty
that can be reduced by calibrating with data (epistemic
uncertainty).

Both 6 and d can be further broken down by com-
ponent, with subscripts C, T and P denoting cathode,
thruster, and plume, respectively. Tabs. I and IT list each
component’s inputs and outputs. We use Bayesian infer-
ence, described further in Sec. IT C, to calibrate the system
against data and characterize the posterior distribution of
the parameters 8. After calibrating, we use a Monte Carlo
analysis of model predictions to understand the relative
magnitudes of the aleatoric and epistemic uncertainties.
This procedure is described further in Sec. ITD.

1. Cathode coupling model

The cathode coupling model, developed in Ref. 11,
predicts the cathode coupling voltage, V.., as a function
of facility background pressure Pp using the following
physically-derived relationship:
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} P, (2)
where Vi, is the expected coupling voltage at vacuum,
Te. is the effective cathode electron temperature, P* is
the pressure at which V.. stops increasing, and Pr is the
base pressure. We treat these four quantities as epistemic
model parameters.

2. Thruster model

We use the open-source 1-D axial fluid Hall thruster
code HallThruster.ji'? to model the thruster discharge.
This code models a quasineutral, multi-species plasma of
neutrals, ions, and electrons subject to an accelerating
potential. HallThruster.jl solves a continuity equation for
the neutrals, both continuity and momentum equations
for ions, and an electron energy equation. It then models
electrons as an inertialess fluid and computes the electro-
static potential and electron current density using charge
conservation and the generalized Ohm’s law / quasineu-
tral drift diffusion approximation.”'4 We consider only
singly-charged ions in the present work, although the code
supports up to three. HallThruster.jl uses V.. calculated
by cathode coupling model as the electric potential at the
right (cathode) boundary. The model outputs thrust and
ion current, which are passed to the plume model, as well
as discharge current and many spatially-resolved plasma
properties, including the axial ion velocity.
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FIG. 1: Overview of the coupled Hall thruster system model, showing the connection between inputs, component
models, and output Qols. Input and output variables are defined in Tab. I and Tab. II, respectively.

HallThruster.jl cannot self-consistently resolve
instability-induced cross-field electron transport. Instead,
the user specifies a spatially-varying profile for the
anomalous electron collision frequency. We employ a
four-parameter model of the following form:

~ 2
z—Z
Qil = Qagnom 1- anom - ==
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(3)
where Qunom = Wee/Vanom 1S the anomalous electron
Hall parameter, vgpnom is the anomalous electron colli-
sion frequency, w.. is the electron cyclotron frequency,
and 2 is the axial coordinate normalized by the discharge
channel length. The transport obeys the Bohm scaling
(Vanom ~ wee) with a localized reduction in transport
following a Gaussian profile at a specified location. This
form captures key features seen in calibrated profiles used
in other codes® while keeping the number of parameters
low. The reduction in transport increases the peak elec-
tric field, producing the steep ion acceleration profiles
observed in experimental data. The parameters of this
model—Qanom, Banoms Zanom, and Lgnom—Tepresent the
maximum inverse Hall parameter and the scale, location,
and width of the transport barrier, respectively. The
latter two parameters are non-dimensionalized by the dis-
charge channel length to increase the transportability of

parameters between thrusters. We chose this parameteri-
zation so that each parameter is of the order O(1) and to
aid interpretability.

As given, this model has no pressure dependence and
thus would be unable to capture the observed upstream
shift in the ion acceleration region in response to increas-
ing back-pressure'®. To account for this, we introduce a
phenomenological model for this displacement modified
from the one in our previous work:'%

1 1
Az(Pg) = AzanomLen (1 e 2Ps/Po-1) 1+e2> .

(4)
Here, Pp is the background pressure and Az(Pg) de-
scribes the magnitude of the upstream shift. The param-
eters of this model are Azgpom and Py, which represent
the magnitude and center of the shift with respect to
background pressure. Eq. (4) is a logistic equation, which
captures the intuition that the anomalous transport profile
should not move arbitrarily far upstream or downstream
as background pressure approaches large or small values.
In practice, we have found that Py = 25 x 10~% Torr pro-
duces good agreement to data for several thrusters, so
we leave only Azgnom as a free parameter. This model is
implemented by setting 2 = (20+Az(Pg))/Lcn, in Eq. (3),
where zg is the un-shifted axial coordinate. We show in



TABLE I: Inputs to the coupled thruster-cathode-plume system. The abbreviations C, T, and P refer to the Cathode,
Thruster, and Plume component models, respectively. Pressures measured in Torr have been corrected for the
respective propellant and should be understood as Torr-Xe or Torr-Kr depending on the gas used.

Symbol Description Units Components Type Distribution
Va Discharge voltage v C, T Operating N(-,2%)
Pg Background pressure Torr C,T,P Operating N(-,5%)
Ma Anode mass flow rate kgs™! T Operating N(-,2%)
Tec Cathode electron temperature eV C, T Parameter ( 6)
Veae Vacuum coupling voltage Vv C Parameter U(0, 60)
Pr Base pressure pnTorr C Parameter U(20,200)
pr Turning point pressure pnTorr C Parameter U(1,100)
Qanom Base inverse Hall parameter - T Parameter U(0,1)
Banom Anomalous transport barrier scale - T Parameter Uu0,1)
Zanom Anom. transport barrier location - T Parameter U(0.75,1.5)
Lanom Anom. transport barrier width - T Parameter U(0,0.5)
AZanom Anom. pressure axial shift scale - T Parameter U(0,0.5)
Un Neutral axial speed m/s T Parameter  4(100, 500)
Cw Electron wall loss scale - T Parameter U(0.5,1.5)
fn Neutral ingestion scale - T Parameter U(1,10)
co Ratio of main to scattered currents - P Parameter U(0,1)
c1 Ratio of main to scattered div. angles - P Parameter 4(0.1,0.9)
C2 Slope of div. angle vs. pressure rad Pa~? P Parameter U(-15,15)
c3 Intercept of div. angle vs. pressure rad P Parameter  U(0.2,7/2)
cq (107) Slope of neutral density vs. Pg m3Pa~! P Parameter (18 22)
cs (107) Intercept of neutral density vs. Pg m~? P Parameter U(14,18)
U(z,y) denotes a uniform distribution between z and y.
N(-,2%) denotes a normal distribution about a nominal value with a standard deviation of x%.
Variables with the (10¥) notation denote a log-uniform distribution.

TABLE II: Outputs of the coupled cathode-thruster-plume system.
Symbol Description Units Component Coupling
Vee Cathode coupling voltage A\ Cathode Cathode—Thruster
T Uncorrected thrust N Thruster Thruster-Plume
I Ton current A Thruster Thruster—Plume
Ip Discharge current A Thruster -
Uion Axial singly-charged ion velocity m/s Thruster -
T. Corrected thrust N Plume -
Jion Plume ion current density A/ m? Plume -

Fig. 2 the shape of the anomalous transport curve and
the effect of the pressure shift model.

We calibrate two additional parameters in addition
to those controlling anomalous transport: a neutral in-
gestion scale factor f, and a wall loss scale factor c,,.
Hall thrusters typically exhibit increased thrust at high
background pressures in part due to the ingestion of back-
ground neutrals, which serve as extra propellant.!617 We
calculate the amount of ingested neutral propellant as
the one-sided flux of a stationary Maxwellian population
of neutrals of a specified background pressure and tem-
perature across the exit plane of the thruster. On its
own, this model may under-predict the true degree of
neutral ingestion,'” so we multiply the ingested neutral
flux by f, to better match experiments. Second, the wall
loss scale parameter, c,,, scales the plasma edge-to-center
density ratio from its base value of 0.5 when perform-

ing electron sheath loss calculations. These wall losses
are the main method by which HallThruster.jl distin-
guishes between magnetically-shielded thrusters like the
H9 and unshielded thrusters like the SPT-100. In shielded
thrusters, we assume the wall temperature equals the an-
ode temperature and we disable ion wall losses, while
in unshielded thrusters, the wall temperature equals the
channel average temperature and ion wall losses are ac-
counted for.

All simulations in this work use a uniform grid of 100
cells and a domain length of three thruster channel lengths.
For the SPT-100 operating at 300 V and 5.0 mg/s, dou-
bling the number of cells or the domain length changes
the discharge current by less than 0.1 A and the thrust
by less than 5 mN, with the precise and direction of the
change depending on the specific simulation parameters
used. We simulate one millisecond of thruster operation
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FIG. 2: Notional plot of the anomalous electron
transport model used in this work, illustrating the
parameters in Eq. (3) and the pressure shift from Eq (4).

and average all Qols over the last 500 microseconds of the
simulation. For breathing mode frequencies above 10 kHz,
this time is sufficient to allow the discharge to converge
to a stationary oscillation or steady state after an initial
transient. With these settings, a single HallThruster.jl
simulation takes about six seconds on a single core of an
Intel Xeon Gold 6154 CPU (the exact time varies per-run
due to adaptive time-stepping).

To summarize, the changes to the thruster model from
our previous work are that the anomalous transport and
pressure shift models are more expressive, and we have
included additional wall loss and neutral ingestion param-
eters. In principle, these changes should allow the model
to better capture observed trends in facility effects and to
better generalize over operating conditions. Additionally,
a combination of internal code optimizations and coars-
ened grid resolution has reduced the runtime by nearly
a factor of ten, making it practical to perform Bayesian
inference directly on the model without a surrogate. To
assess the impact of the modeling changes from the infer-
ence changes, we report in Appendix B results obtained
by calibrating the model of our previous work using the
inference procedure of the present work.

3. Plume model

We employ the semi-empirical plume expansion model
used in Refs. 10 and 13. This model treats the ion cur-
rent density in the plume (jion) as composed of three
populations—main beam ions, ions scattered by inelastic
collisions, and slow ions produced by charge-exchange

collisions with neutrals:
jion = jbeam + jscatter + jcex- (5)

The first two populations follow Gaussian angular distri-
butions with characteristic divergence angles, while the
last expands uniformly in a hemisphere. The current
density of each population decays proportionally to the
inverse square of the distance from the thruster exit plane.

Given the current density jion(r, ¢) as a function of
distance r from the thruster exit plane and angle ¢ from
thruster centerline, we compute the beam divergence
angle ¢4 from the ratio of the axial and total ion beam
currents:'®

IB,z 271-7'2 077/2 jion(r? ¢> COS(¢) Sln(¢)d¢
$a=—1== P . (6)
B fo Jion (Ta ¢) COS(¢)d¢

Here, ¢ = 0 indicates the thruster centerline. We then
“correct” the thrust from the thruster model (T' — T¢)
according to

T, = T cos(¢a), (7)

which accounts for the loss in axially-directed thrust due
to beam divergence. This differs from our previous work,'°
in which we used the “uncorrected” thrust directly and
consequently over-predicted the true measured thrust.

B. Experimental data

We study two thrusters in this paper — the SPT-100
and the H9. The SPT-100, shown in Fig. 3a, is a widely-
tested 1.5 kW-class Hall thruster developed by Fakel in
Russia.'® Due to its age and the availability of its ge-
ometry and magnetic field configuration, it is often used
for model development activities. The H9 (Fig. 3b) is
a magnetically-shielded 9 kW-class Hall thruster devel-
oped in collaboration between the University of Michigan
(UM), the Air Force Research Laboratory and the Jet
Propulsion Laboratory.®

We summarize the experimental datasets used in this
study for both thrusters in Tab. III, including the mea-
surement Qols, the number of unique operating condi-
tions (sets of Vg, Pg, 1) in each dataset, and the original
sources of the data. Datasets categorized as “training” are
used in the calibration procedure to tune the model pa-
rameters. We additionally include “test” datasets which
are not seen during training and use these to assess how
well the model generalizes beyond the training data. The
SPT-100 datasets'®16:20 were all obtained using xenon
propellant, and all H9 datasets used krypton.2!:22

The SPT-100 datasets from Ref. 20 include perfor-
mance measurements (i.e., coupling voltage, thrust, and
discharge current) and angularly-resolved measurements
of the ion current density in the plume at a radius of
one meter from the thruster exit plane, comprising fifteen
total operating conditions across two facilities (L3-Harris
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FIG. 3: (a) The SPT-100 Hall thruster. (b) The H9 Hall thruster operating on krypton in the Large Vacuum Test
Facility at the University of Michigan.

TABLE III: Summary of the experimental training and test datasets for the SPT-100 and H9 thrusters in this study.
The measurement quantities of interest (Qols) are listed along with the number of unique operating conditions (sets of
Va, P, ) for each dataset. Pressures measured in Torr are corrected for the gas used in the respective dataset.

Thruster Gas Summary Ref. Qols Conditions Pressure [nTorr| Category
SPT-100 Xe Diamant et al. 2014, L3 20 Veey Ipy Tey Jion 8 1.67-55.1 Training
SPT-100 Xe Diamant et al. 2014, Aerospace 20 Vee, Ip, Te 7 3.45-73.7 Training
SPT-100 Xe Macdonald-Tenenbaum et al. 2019 15 ID, Wion 3 15.0-50.0 Training
SPT-100 Xe Sankovic et al. 1993 16 Ip, T¢ 119 2.48-55.0 Test
SPT-100 Xe Manzella et al. 2001 3 Ip, Tt 2 0.02-2.00 Test
H9 Kr UM 2024, Plume 22 Vee, IDy Jion 3 4.48-43.4 Training
H9 Kr UM 2024, Velocity 21 ID, Uion 5 4.33-30.0 Training
H9 Kr GT 2024 23 Ip, Te, jion 3 8.70-22.1 Test

Nomenclature for the Qols is provided in Tab. II.

and Aerospace Corporation). The additional training
dataset from Ref. 15 includes the discharge current and
spatially-resolved axial ion velocity at three conditions.
The test dataset from Ref. 16, includes global performance
metrics (thrust and discharge current) at a diverse range
of flow rates and background pressures. Finally, the SPT-
100 test dataset from Ref. 3 contains measurements from
two Russian Express-A satellites, both on the ground
and on-orbit. The thruster ran at 300 V on the ground
and 310 V on orbit. The mass flow rate for the on-orbit
data was not measured and was instead estimated by
the authors based on previous SPT-100 experiments. We
describe this dataset in more detail in Appendix A.

The H9 data in Tab. III originates from a 2024 test cam-
paign to compare the performance of the same thruster at

two different test facilities, namely Vacuum Test Facility
2 at the Georgia Institute of Technology (GT) and the
Large Vacuum Test Facility at the University of Michigan.
The UM data?! spans eight background pressures: five
of these conditions (the “velocity” dataset in Tab. IIT)
include laser-induced fluorescence measurements of ion
velocity?! and three (the “plume” dataset) contain both
cathode coupling voltage and plume ion current density
measurements at radii of 1.16 m, 1.32 m, 1.32 m, and
1.64 m.?? The GT data?® contains three operating condi-
tions, again differing mainly in background pressure, and
includes thrust, ion current density measurements at a
distance of one meter, and discharge current. For all H9
datasets, the thruster operated at a nominal discharge
current of 15 A and a discharge voltage of 300 V.



C. Calibration procedure

We calibrate the epistemic model parameters 8 against
experimental data using Markov Chain Monte Carlo
(MCMC) to generate samples of the epistemic param-
eters according to their posterior distribution. This is
given by Bayes’ rule:

PO y0) = plve | Op(6)

where y. is a vector of all experimental data at all operat-
ing conditions, p(@ | y.) is the posterior distribution of all
the epistemic parameters given the data, p(y. | 8) is the
likelihood of the experimental data given the parameters
and the model, p(@) is the prior distribution, representing
the state of knowledge about the model parameters prior
to observing any data, and Z is a normalizing constant.

The prior distributions for each parameter are listed
in Tab. I, where we have used uninformative uniform
distributions over the expected ranges for each parame-
ter and we assume all parameters are independent. For
simplicity, we neglect the aleatoric uncertainty in the op-
erating conditions d during calibration, i.e., we calibrate
the epistemic model parameters 6 assuming the operating
conditions take on their mean values in Tab. I. Treat-
ing the aleatoric uncertainty robustly during calibration
would require us marginalize over the aleatoric variables
at each MCMC sampling step. This can be done, for
instance, using pseudo-marginal MCMC,2* but would re-
quire several model evaluations per sample, significantly
increasing the cost of inference. We justify this choice
by noting that the aleatoric variables are distributed ac-
cording to narrow Gaussian distributions, for which a
single point sample at the mean provides a good (albeit
potentially biased) approximation. In the following sec-
tion, we discuss our approach to quantifying the impact
of aleatoric uncertainty in our predictions; for now, we
remark that our method likely underestimates it.

To obtain the likelihood of data given the epistemic
parameters, we assume the measurement noise of each
observation of each quantity of interest is independent.
For each Qol, n, represents the number of operating
conditions which have data for that Qol, and m, is the
length of the observation of that Qol. For the cathode
coupling voltage, discharge current, and thrust, m, =1
since we only observe a single number, but for ion velocity
and ion current density m, will be O(10)-0(100) as these
Qols are spatially-resolved. Under this formulation, the
likelihood is written as

Q ngmg
p(ye | 6) = prpqwe HH () | 9),
q: :

where yg) represents the j-th observation of the g-th Qol
and ) = 5 is the number of Qols. The outer product as-
sumes independence across quantities of interest, and the

inner product assumes independent observations within

and across an operating conditions. We next assume
that the error can be modeled using additive Gaussian
noise. Next, we need to assume some form of error model
between the observed model and the predicted value.
Specifically, we model the predicted observation of the
g-th Qol at the j-th operating condition as

yg‘;) :fQ(e’dgjq))—'_é-qa quN(O,Ug)

where dg]) represents the operating conditions associated
with a specific experimental data point, &, represents a
stochastic model for the error between the model predic-
tion and the observation, and o2 is the variance of this
error, which may be chosen per-Qol. Under this model
we have

p(yd) | 0) =N

The log-likelihood is then
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As only the second term depends on 6, we can fold the
summation over the first term into a constant C' which
drops out during MCMC sampling or optimization, giving
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As written, this likelihood over-weights Qols like ion veloc-
ity which have tens of points per operating condition and
underweight global properties like thrust. To mitigate
this, we express the pointwise standard deviation o, in
terms of an average relative error across a whole dataset:

2 2
Ty = Cgs
where v, represents a relative measurement error and c,
is a reference magnitude. We use the data to set ¢, based
on the squared Ly norm of the vector of observations of
q, averaged over the number of operating conditions in
which ¢ was observed:
J)
o Iy,
q ng q7

where the [Jycg||* = 27" (y(%))z. Using this choice, the
log likelihood becomes

Q
— 1 Z Nq |[yeq — £4(0,deq)]I?
22252 Jival?

log p(ye | 6) +C. (8)



The interpretation of -,/ \/Tiq 18 as an averaged relative
Lo norm of the difference between the data and the model
output in Qol g across all operating conditions. In the
results that follow, we choose v,/,/n, = 2.5% for all Qols,
which is equal to or lower than to the estimated relative
measurement error for all quantities except the cathode
coupling voltage and thrust of the SPT-100, for which we
instead set vq/\/ng = 1%.

With this likelihood in hand, we employ MCMC (specif-
ically the Delayed Rejection Adaptive Metropolis algo-
rithm?%) to draw 50,000 samples from the posterior distri-
bution. We discard the first half of the drawn samples as
burn-in and perform our analysis using the second half.
We calibrate each thruster separately, giving each its own
posterior parameter distribution. As this likelihood dif-
fers somewhat from that used in our previous paper!®we
assess the impact of this change independent of differences
in our modeling assumptions and parameterizations in
Appendix B. There, we repeat the main analysis of this
work using the model of the previous work in concert with
the new likelihood, which can be compared with the main
results obtained in the following sections.

D. Uncertainty quantification

After obtaining samples from the posterior parameter
distribution, we then quantify the uncertainty in model
predictions when comparing to experimental data. We
wish to characterize the impact of both epistemic and
aleatoric uncertainty in our predictions: the epistemic
uncertainty is obtained by propagating only samples of
model parameters @ through the model, and total uncer-
tainty (aleatoric 4+ epistemic) is obtained by sampling the
aleatoric uncertainties in the operating conditions d. As
discussed previously, this approach likely underestimates
the aleatoric uncertainty but improves our method’s com-
putational efficiency. In Sec. IV B we discuss the effects
of this choice in further detail.

Concretely, we adopt the following procedure. For epis-
temic uncertainty, we draw N samples from the posterior
parameter distribution p(@ | y.) obtained by MCMC (we
take N = 1000 throughout our analysis), keeping the
aleatoric variables at their nominal values. For the to-
tal uncertainty, we draw N samples from both p(@ | y.)
and p(d) (the prior distribution of the aleatoric variables,
as given in Tab. I). In both cases, we then evaluate
the model at each input vector x = (8,d) and compute
statistics (such as the mean and variance) on the model
outputs. Unless otherwise noted, we present in our results
the median prediction of each Qol as well as a 90% credi-
ble interval of predictions drawn from both distributions.
The difference between the epistemic uncertainty bands
and the total uncertainty bands gives an estimate of the
aleatoric uncertainty compared to epistemic uncertainty.

Il. RESULTS

In this section, we first examine the posterior param-
eter distributions obtained by the Bayesian calibration
procedure before showing the performance on training
datasets. We then validate the model’s generalization on
the independent test datasets and attempt a preliminary
extrapolation of the SPT-100 data to orbit. Next, we
analyze the anomalous transport curves inferred by the
model and conclude by assessing the sensitivity of the
model to the calibration parameters.

A. Calibration

In this section, we present the results of the Bayesian
inference procedure described in Sec. ITC. We list for
the SPT-100 and H9, respectively in Tabs. IV and V,
each calibration parameter, their prior distributions, and
several statistics of their posterior (post-calibration) dis-
tributions.

We find that the posterior distributions of most param-
eters are narrowed from the prior distributions, indicating
that the data is informative for reducing the epistemic
uncertainty while not being so restrictive as to produce
point estimates. There are a few parameters, however,
whose posterior distributions span nearly the same range
as their priors:

1. The wall loss scale parameter (¢,) for the
H9: The wall loss model’s behavior for shielded thrusters
described in Sec. IT A 2 reduces the wall interactions to
the point that ¢, has little effect on the likelihood for
this thruster

2. Cathode parameters (especially the electron
temperature, T,.., and base pressure, Pr) for the
SPT-100: The closeness of the cathode data to a flat
value of V.. = V4. means we are less successful in reduc-
ing the uncertainty in these parameters.

3. The neutral ingestion scale parameter (f,) for
both thrusters; While this parameter was intended to
improve the model’s sensitivity to changing background
pressure, in practice it is not able to be inferred with
precision. Instead, the coupling between thruster and
plume models means that increased plume divergence at
lower pressure is sufficient to replicate the trends in the
thrust data.

Additionally, the inferred distributions of some param-
eters differed between thrusters. The median value of
the anomalous pressure shift parameters, Azgnom, was
nearly twice as high for the SPT-100 than for the H9,
accurately reflecting the difference in the magnitude of
the upstream acceleration region shift with pressure in the
two thrusters’ training datasets. Similarly, the anomalous
collision frequency scale, agpnom Was twice as high for the
H9 as for the SPT-100, although for both thrusters it



TABLE IV: Statistics of the 1-D marginal posteriors of the SPT-100 parameters.

Posterior
Variable Prior Min 5% petile 50" petile 95" petile Max  Std dev
Pr U4(10,100) 10 14.47 48.72 93.63 99.95 24.81
P U(10,200) 10.04 25.60 64.85 140.12 197.95 35.27
Te U(1,6) 1 1.17 2.92 4.85 6 1.18
Viae U(0,60) 29.84 30.87 31.75 32.40 32.88 0.46
Banom Uu(0,1) 0.95 0.97 0.99 1 1 0.01
Zanom U(0.75,1.5) 1 1.06 1.14 1.20 1.26 0.04
Qanom Uu0,1) 0.02 0.04 0.06 0.09 0.10 0.01
AZanom U(0,0.5) 0.08 0.20 0.33 0.45 0.5 0.08
Lanom U(0,0.5) 0.25 0.34 0.43 0.49 0.5 0.05
Cw U(0.5,1.5) 0.5 0.51 0.67 1.25 1.50 0.23
fn U(1,10) 1 1.40 5.23 9.53 10 2.59
Un, U (100, 500) 157.59 195.57 278.11 378.17 448.28 55.07
co U(0,1) 0.67 0.71 0.76 0.79 0.82 0.03
c1 U(0.1,0.9) 0.26 0.29 0.32 0.36 0.41 0.02
ca U(-15,15) -15 -14.52 -12.36 -8.88 -5.32  1.77
c3 U0.2,7/2) 0.2 0.2 0.21 0.22 0.24 0.01
ca (107) U(18,22) 20.02 20.15 20.33 20.45 20.55 0.10
cs (10%) U(14,18) 14 14.03 14.33 15.48 16.88 0.50
Variables with the (10) notation indicate a log-uniform distribution.

TABLE V: Statistics of the 1-D marginal posteriors of the H9 parameters

Posterior
Variable Prior Min 5% pctile 50th pctile g5th pctile Max  Std dev
Pr U(1,100) 1 1.22 3.18 10.89 40.03 3.51
P U(10,200) 41.24 42.47 45.33 46.86 48.79 1.33
Te U(1,6) 3.03 4.18 5.4 5.95 6 0.57
Voae U(0,60) 17.44 18.50 21.94 26.47 30 2.49
Banom Uu(0,1) 0.94 0.96 0.98 0.99 1 0.01
Zanom Z/I(O.75, 1A5) 1 1.04 1.07 1.1 1.15 0.02
Qanom Uu(0,1) 0.04 0.07 0.13 0.18 0.21  0.03
AZanom U(0,0.5) 0.01 0.06 0.18 0.29 0.37 0.07
Lanom U(0,0.5) 0.19 0.29 0.43 0.49 0.5 0.06
Cw U(0.5,1.5) 0.5 0.64 1.19 1.48 1.5 0.25
fn U(1,10) 1 1.37 3.85 8.87 10 2.25
Un, U (100, 500) 217.09 245.48 268.86 302.43 322.44 17.7
co Uu(0,1) 0.03 0.15 0.32 0.64 0.77 0.15
c1 U(0.1,0.9) 0.1 0.17 0.39 0.69 0.85 0.17
ca U(-15,15) -9.65 -4.81 2.71 14.51 15 6.68
cs3 Uu0.2,7/2) 0.23 0.26 0.32 0.35 0.37 0.02
ca (10%) U(18,22) 18.52 19.23 20.15 20.33 20.44 0.34
cs (10%) U(14,18) 14 14.02 14.26 14.98 15.63 0.31

Variables with the (10¥) notation indicate a log-uniform distribution.

varied across at least a factor of two. Finally, co, which
determines how the divergence angle trends with back-
ground pressure was found to have an opposite sign for the
H9 as in the SPT-100. For the SPT-100, it is uniformly
negative, indicating a reduction in plume divergence at
high pressure. By contrast, for the H9 the median value
is positive, leading to the opposite trend. These inferred
parameters reflect real trends in the data, and indicate
the success of the calibration procedure.

Appendix C shows the single and two-parameter

marginals of the posterior parameter distributions for
each component model and thruster. In the joint distri-
butions, we observe that some parameters (zgnom and
AZanoms Qanom and Lapom, ¢o and c3, and for the H9,
Viae and Pr) are highly-correlated. These correlations are
indicative of the fact that some parameters influence the
likelihood in similar ways and may trade off against one
another. For instance, both agnom and Lgyem control the
total electron current and thus the discharge current, the
former by scaling down the anomalous mobility globally,



and the latter by broadening the region of low anomalous
mobility. As such, at higher values of agpnom, the model
requires a value of Lgyom, to maintain the same discharge
current and thus observe a positive correlation between
these variables. Fortunately, each of our parameters are
identifiable, as each of marginal distributions display clear
maxima despite the occasional parameter correlations.

1. SPT-100

In Figs. 4, 5, and 6, we show how the model predic-
tions of cathode coupling voltage, discharge current, and
thrust differ under the prior parameter distribution and
the calibrated posterior distribution. In these plots, we
show the median model output of each Qol and the 90%
credible interval (CI). The interval contains both aleatoric
and epistemic uncertainties in the prior plots, while in
the posterior plots we show both separately. For each
Qol, the uncertainty is dramatically reduced under the
posterior, and the median prediction moves closer to the
experimental data.

The cathode coupling voltage is well-recovered under
the posterior, including the non-monotonic trend with
increasing background pressure. However, the predicted
trend is more subtle than the experimental one and peaks
at a different pressure. This contrasts with our previ-
ous work, which was able to more tightly reduce the
uncertainty in the cathode parameters and thus better
capture the trend in the data. This is likely a result of
the likelihood used in this work, which prioritized rela-
tive error over the entire dataset rather than the sum of
point-wise absolute errors as in the previous work. We
observed this outcome as well in the calibrated cathode
parameters in Tab. IV, where overall relative error is
greatly reduced by fine-tuning the V.. parameter, but
the (Pr, P*,T..) parameters that characterize the more
subtle trends with pressure contribute less to the like-
lihood and so were calibrated to a much lesser extent.
It is possible that given additional time, the calibration
procedure may have fine-tuned these parameters more to
better fit the experimental trend. We recover the correct
flat trend in discharge current with respect to background
pressure in Fig. 5, though the 4.25 A points from Ref. 15
lie slightly outside of the CI. The posterior predictive
CI bounds also encompass the experimental thrust and
exhibit the correct trend with pressure, i.e., slightly in-
creasing with background pressure. For cathode coupling
voltage and discharge current, the epistemic uncertainty
is much larger than the aleatoric uncertainty, while for
thrust the aleatoric uncertainty is equal to or greater
than the epistemic uncertainty. This stems from the fact
that the thrust is more directly impacted by voltage and
flow rate than the discharge current and cathode coupling
voltage.

In Fig. 7, we compare the simulated ion velocity to
measurements from Ref. 15. Our model captures the
upstream shift in ion acceleration region with increasing

10

background pressure as well as the maximum slope of
the ion velocity profile. In the data, the ion velocity pro-
file at Pg = 35uTorr actually sits about 1 mm further
upstream than that at Pg = 50 pTorr. The authors of
the original paper noted that this was unexpected, as
in most thrusters the acceleration region shifts mono-
tonically upstream with pressure. As our model also
assumes monotonicity, we do not capture this feature of
the data. The main discrepancies with data occur up-
stream of the acceleration region, inside of the discharge
channel (z/Lcp, < 1), where the model overestimates the
ion velocity. The reason for this overestimate is unclear,
but likely has to do with the large ion backflow region
(where ;o < 0) seen in the data, which is unusual com-
pared to ion velocity measurements on other thrusters.
As an example of the level of model uncertainty typical
for these predictions, we show in Fig. 7b the uncertainty
bounds for the prediction at 35 pTorr.

In Fig. 8, we show the plume ion current density profile
at a distance of 1 meter from the thruster exit plane,
compared to data from Ref. 20. For visual clarity, we only
show three representative pressures out of the eight in the
dataset. The model agrees with the data well, especially at
angles less than 60 degrees. At larger angles, the absolute
errors remain low while the relative error increases; this
effect is magnified visually by the use of the logarithmic y-
axis scale in Fig. 8. The likelihood used during calibration
implicitly weights points with larger magnitudes higher
than those with lower magnitudes. As very small current
densities at large angles do not contribute much to the
divergence angle integrals in Eq. 6, this choice prioritizes
fitting the parts of the ion current density curve with a
direct impact on the observable Qols.

2. H9

In Figs. 9, 10, and 11, we show the prior and posterior
predictions of the cathode coupling voltage, discharge
current, and thrust from the H9. The model captures the
monotonic trend in cathode coupling with pressure, and
has reduced the uncertainty in the discharge current to
a narrow band around 15 A. In contrast to the SPT-100
results, we predict a decreasing trend in thrust at high
background pressures. We return shortly to a discussion
of possible reasons for this trend.

In Fig. 12, we plot ion velocity curves for the H9 at
three representative pressures. We observe both good
agreement between the model and data as well as low
prediction uncertainty. In particular, the final exit veloc-
ity, the pressure-dependent acceleration region shift, and
the steepness of the acceleration profile are all captured
accurately.

The current density dataset for the H9 includes mea-
surements at multiple background pressures, each in turn
taken at several distances from the thruster. For visual
clarity, we first show results at a single distance and multi-
ple pressures, followed by results at multiple distances and
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a single pressure. Fig. 13a, shows the ion current density
curves at distance of 1.32 meters from the thruster and
multiple pressures. As our chosen model form requires
that the ion current density peak at zero degrees and de-
cay monotonically with increasing angle, we are unable to
capture the observed peak in the data at 7 degrees off-axis.
However, we successfully reproduce both the maximum
current density and the trends with background pressure
for angles up to 40 degrees. As in the SPT-100 data, this
departure from the data at larger angles is reflected in
Fig. 13b as increased relative uncertainty. Unlike in the
SPT-100, the divergence angle of the H9 increases with
pressure, which directly reduced the thrust at higher pres-
sures. Without thrust data in the training dataset, this
trend was unable to be counteracted by changes in other
parameters during the calibration procedure. Finally, we
plot in Fig. 14 the current density at all four radii in
the training dataset, at a fixed pressure of 26.10 pnTorr.
This demonstrates that our calibrated model accurately
captures trends with distance as well as pressure.

3. Training performance

A more quantitative picture of the training performance
can be obtained by examining the relative Ly error of the
calibrated model with respect to the training data. Given
N samples of parameters 8 and operating conditions d
from the prior or posterior distributions, we calculate the
mean and standard deviation of the Ly error in a Qol ¢

e Fu @
Bt =\l ©)

1 N
Mg = N ZEq(Xj) (10)
1 N
Oq = NZ[Eq(Xj) _Mq]zv (11)

where E,(x) is the Ly error in Qol ¢ between the model
and data for input parameters x. In Tabs. VI and VII,
we report these errors for the SPT-100 and H9, respec-
tively for N = 1000 samples of the inputs x; drawn from
the prior and posterior input distributions as described
in Sec. IID. For comparison, we additionally report the
errors when the model is evaluated at the median parame-
ter values (us0 = E(x50)) as well as the ratio between the
error and the nominal relative measurement uncertainties
(€) used in our previous work.1? A value of p50/& ~ 1 indi-
cates that the model fits the data within the experimental
uncertainty. We note that these metrics are identical to
those in our previous work, which facilitates a direct com-
parison for determining improvement in the models; we
include in Tab. VI the model and surrogate errors from
the results of the previous work (note that a surrogate
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was not required in the present work due to optimizations
in the thruster code).

All Qols have a posterior ps0/€ of order 1 and show
large improvement from the prior. For the SPT-100, most
Qols also show improvement over both the model and
surrogate from previous work. The error in V.. is higher
than the previous model, which is likely explained by the
wide posterior distributions of T, and Pr as discussed in
Sec. ITT A. We note that the goal of the previous work was
to calibrate the true model using the surrogate as a proxy,
and we show in Tab. VI that the model in the present
work shows considerably greater accuracy compared to
the previous model for all Qols (except V,.). There are
some cases, such as for thrust, where the surrogate from
the previous work performs better than our model, but
the ultimate goal is accuracy in the true model, for which
the present work demonstrates better performance (e.g.
by a factor of eight for thrust). In all cases, the standard
deviation of the errors, o, is higher than our previous
work. While this may seem at first like a negative result,
it in fact demonstrates the success of our new likelihood
function. In that work, the uncertainty in our predictions
was very low, and in many cases the data lay well outside
of the uncertainty bounds. Our updated procedure allows
for larger predictive uncertainty which more accurately
captures the state of our knowledge post-calibration.

The H9 model (Tab. VII) fits the data well for all quan-
tities, although here the interpretation of pso/€ is more
complicated. For comparing to the SPT-100 data, we
use the same nominal measurement uncertainty values,
though we note that the uncertainty in the cathode cou-
pling voltage for the H9 was closer to 2.5%. This would
bring ps0/¢ down to 2.24, which is consistent with the
error for the SPT-100 cathode coupling voltage.

B. Test performance

In this section, we assess the ability of the calibrated
model to extrapolate to operating conditions outside of
the training dataset. To this end, we use the test datasets
described in Sec. IIB. In Fig. 15, we plot the prior and
posterior predictions of discharge current (Fig. 15a) and
thrust (Fig. 15b) for the SPT-100 dataset from Ref. 16.
We show in Fig. 16 the same Qols for the H9 dataset in
Ref. 23. These plots compare the predicted Qol to the
experimental value, with good agreement indicated by
points lying close to the dashed black y = z line. We
also report in Tab. VIII the same Lo error metrics as in
Sec. TIT A 3.

The SPT-100 model predicts the test data well and
outperforms the model from previous work, though with
errors larger than those seen for the training data. The
standard deviation in thrust and discharge current errors
is reduced to below 2.5%, and the posterior median errors
are below 10%. Additionally, the model tends to slightly
under-predict the experimental thrust. The model pre-
dicts the correct discharge current for the H9 with an
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error of just 1.3%, with a standard deviation of 1.8%; this
good agreement is unsurprising in light of the fact that
the discharge current was a constant 15 A in both training
and test datasets. Despite lacking thrust in the training
data, the H9 model is able to improve on the prior pre-
dictions for thrust and obtain a median prediction error
of 10%. The error standard deviation has additionally
been reduced by a factor of four from the prior, but the
predicted thrusts underestimate the experimental values

in all cases.

Taken together, these results show that the calibrated
models of both the H9 and SPT-100 are able to extrapo-
late beyond their training datasets. This was especially
observed for the SPT-100, and it is likely that the perfor-
mance of the H9 model would improve if a wider range of
training conditions is made available (i.e., more discharge
currents and thrust data).

C. Extrapolation to orbit

We now turn to using the calibrated model to attempt
extrapolation of SPT-100 ground test data to space. We
report in Tab. IX predictions of the SPT-100 thrust and
discharge current for the on-orbit Express satellite test
dataset.3

The discharge current is captured to within 5% of the
experimental value in both cases, and we correctly pre-
dict that the current should increase slightly between the
ground and orbit. We also recover the thrust to within
10%, though as in the test dataset from Ref. 16 we under-
predict the thrust in both cases. However, we also predict
that the thruster should exhibit higher thrust on orbit
than on the ground, which conflicts with the trend in the
data. We suspect this result stems from the fact that all
simulations in the training dataset were performed at a
discharge voltage of 300 V, while the SPT-100 from Ref. 3
operated at 310 V on orbit. During training, the model
was thus unable to learn how changes in discharge voltage
affect the thruster’s performance and plasma properties.
The effects of the voltage discrepancy between on-ground
and on-orbit operation in this case likely overwhelmed the
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TABLE VI: Relative Lo error between model predictions and training data for the SPT-100. £ is the nominal
experimental error in the data, p is the mean error, o is the standard deviation of the error, and usg is the prediction
error at median parameter values. This work is compared to surrogate and model results from previous work.'°

SPT-100 Ly error [%)]
Qol & %) Distribution 150 L o tso/€
Vee [V] 1 Prior (this work) 4 45.9 26.8 4
Posterior (this work) 2.5 2.8 0.5 2.5
Posterior (prev. work, model) 2 - - 2
T, [mN] 1 Prior (this work) 30.4 27.6 13.3 30.4
Posterior (this work) 3.3 3.5 0.5 3.3
Posterior (prev. work, model) 29 - - 29
Posterior (prev. work, surrogate) 2.5 2.6 0.2 2.5
Ip [A] 10 Prior (this work) 728.9 667.9 324.3 72.9
Posterior (this work) 3.3 3.9 1.4 0.3
Posterior (prev. work, model) 63 - - 6.3
Posterior (prev. work, surrogate) 45 45 0.3 4.5
Uion [m/8] 5 Prior (this work) 24.2 25 4.8 4.8
Posterior (this work) 12.2 13.8 1.3 2.4
Posterior (prev. work, model) 17 - 3.4
Posterior (prev. work, surrogate) 21 21 0.2 4.2
Jion [A/m?] 20 Prior (this work) 87.2 80.7 15.4 4.4
Posterior (this work) 11.4 18.6 1 0.6
Posterior (prev. work, model) 49 - - 2.4
Posterior (prev. work, surrogate) 33 33 0.3 1.6

TABLE VII: Relative Ls error between model predictions and training data for the H9. Symbols have the same
meanings as Tab. VI.

H9 Ly error [%)]

Qol & %) Distribution 150 L o uso/E

Vee [V] 1 Prior 10.7 53.8 28.4 10.7
Posterior 5.4 6.1 1.3 5.4

Ip [A] 10 Prior 318.2 301.9 157 31.8
Posterior 3.4 4.3 1.1 0.3

Uion [m/8] 5 Prior 45.8 43.6 8.1 9.2
Posterior 4.1 5.3 1 0.8

Jion [A/mz} 20 Prior 82.6 76.9 18.6 4.1
Posterior 18.9 19.5 0.5 0.9

pressure-dependent effects, causing the model to predict
the wrong trend. To assess whether the 10 V voltage
difference could account for the reversal in the direction
of the trend, we run an additional batch of simulations
with 300 V on-orbit instead of 310 V (labeled "Orbit (300
V)” in Tab. IX). In this case, we observe a modest re-
duction in thrust from ground to orbit as expected, with
a median decrease of 0.3 mN. We additionally note that
the mass flow rate for these data was not measured for
either on-ground or on-orbit operation in this dataset,

making it challenging to reproduce the operating condi-
tions accurately. These results suggest that more data
over a wider range of operating conditions are needed for
accurate extrapolation to orbit.

D. Anomalous electron transport

The magnitude and scaling of the anomalous electron
transport are known to have a large impact on Hall
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thruster model results compared to other parameters.
Here, we briefly analyze the calibrated anomalous elec-
tron collision frequency profiles and the uncertainty in
the five transport parameters. In Fig. 17, we show the
profiles of the anomalous electron collision frequencies for
the SPT-100 and H9 at three pressures each. As designed,
the profile moves upstream at higher pressures. The un-
certainty in the axial position of the profile is very low,

as reflected by the distributions of parameters zgpom and
Lanom in Tabs. IV and V. The uncertainty in the mag-
nitude of the anomalous transport at the bottom of the
Gaussian trough, Banom is similarly low. The posterior for
this variable lies in the range (0.95,1) for both thrusters,
reduced from a prior range of (0,1). In contrast, the maxi-
mum magnitude of the anomalous transport (governed by
Qanom) has high uncertainty, spanning at least a factor of
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TABLE VIII: Relative Lo error between model predictions and test data for the SPT-100 and H9. The SPT-100 test
data comes from Ref. 16 and the H9 test data from Ref. 23. Previous work values come from Ref.'. Symbols have the
same meanings as Tab. VI.

SPT-100 Ly error [%)]

Qol & %) Distribution 150 L o tso/€

T. [mN] 1 Prior (this work) 29.8 28.3 12 29.8
Posterior (this work) 9.6 10.4 1.8 9.6
Posterior (prev. work, model) 30 - - 30
Posterior (prev. work, surrogate) 7 7 0.1 7

Ip [A] 10 Prior (this work) 672.9 622.2 325.1 67.3
Posterior (this work) 8.9 9.6 24 0.9
Posterior (prev. work, model) 53 - - 5.3
Posterior (prev. work, surrogate) 40 40 0.1 4

H9 Ly error [%)

Qol & %] Distribution 150 i o wso/€

T. [mN] 1 Prior 27.2 25.6 14.8 27.2
Posterior 10 10.4 3.8 10

Ip [A] 10 Prior 340 315.1 156.3 34
Posterior 1.3 3.8 1.8 0.1

Jion [A/m?] 20 Prior 88.6 81.3 17.3 4.4
Posterior 34.3 34.4 1.8 1.7

TABLE IX: SPT-100 thrust and discharge current from the Express-A satellites® compared to model.

Qol Case Data Sim. median Sim. 5th pctile Sim. 95th pctile
Thrust [mN] Ground (300 V) 84.6+£24 75.2 71.2 78.7
Orbit (310 V) 83.3£3.2 76.6 73.1 80.3
Orbit (300 V) - 74.8 70.9 78.6
Discharge current [A]  Ground (300 V) 4.5 4.3 4.06 4.53
Orbit (310 V) 4.6=£0.1 4.33 4.1 4.58
Orbit (300 V) - 43 4.07 453

two for both thrusters. This result is in line with similar
observations by Mikellides and Lopez-Ortega,”2¢ as well
as those by Hara and Mikellides,?” which found that the
near-anode anomalous collision frequency has a larger
effect thrust and ionization oscillations than it does on
the ion velocity profile. This also explains the larger un-
certainty in agnom for the H9, as without thrust data the
near-anode electron transport was not as constrained as
for the SPT-100. Finally, the correlation between Lgnom
and Bunom may have increased the uncertainty in cgnom
due to their conflicting effects on discharge current, as
described in Sec. IITA.

E. Global sensitivity analysis

As in our previous work, we use Sobol’s method?® to
compute the influence of each of the model parameters
in Tab. I on each of the five quantities of interest in

Tab. II. For the ion velocity and ion current density, we
use the value attained at the exit plane and peak current
density, respectively, as our output variables. We draw
5000 samples from the prior distributions of each variable
and use these to estimate the Sobol’ total-effect indices.
These measure the amount of the variance in each output
variable is attributable to any given input,2?3° including
all second- and higher-order correlated effects. Fig. 18
shows the computed indices for each variable and quantity
of interest. Note that the sum of all total-effect indices
for a given quantity will in general be greater than one.

For both the SPT-100 (Fig. 18a) and the H9 (Fig. 18b),
the cathode coupling voltage is most sensitive to the
vacuum coupling voltage V,q.. As this parameter is re-
sponsible for setting the minimum coupling voltage, this
high level of sensitivity makes sense in light of results in
Figs. 4 and 9, in which the change in cathode coupling
voltage with background pressure is shown to be small
relative to this minimum value. The discharge current is
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most sensitive to the anomalous transport scale agnom
and the transport barrier depth Bunom, with the other
parameters having minor effects. The thrust sensitivities
are similar for both thrusters, with agnom and multiple
plume parameters (cg, ¢1, and c¢3) providing the largest
contributions, these latter via their influence on the plume
divergence efficiency. The ion velocity at the exit plane is
most sensitive to the Zenom, Xanom, aNdBanom anomalous
parameters in both thrusters, and the peak ion current
density is most influenced by cg, c3, and ¢4. Lastly, as
suggested by the marginal distributions in Sec. ITT A, all
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Qols are insensitive to the neutral ingestion factor f,,
with the largest effect seen in the thrust of the SPT-100.

The lack of sensitivity of the Qols to many of the vari-
ables, in particular the neutral velocity and the cathode
parameters, is likely due to the outsized effects of the
anomalous transport parameters on the prior. On re-
stricted parameter ranges closer to the calibrated values,
we expect that the relative sensitivity of the Qols to many
parameters would increase. We investigate this hypothe-
sis in Appendix D by repeating the same analysis using
samples from the calibrated posterior distributions for
each thruster.

IV. DISCUSSION

In this work, we applied Bayesian inference to calibrate
a coupled multi-component Hall thruster model against
experimental data for the SPT-100 and H9 thrusters. We
used these models to produce probabilistic predictions
of several quantities of interest (Qols), including thrust
and spatially-resolved ion velocity, at different operating
conditions and background pressures. Across most Qols,
the models of both thrusters exhibited training and test
errors of less than 10%, with the SPT-100 model outper-
forming previous work. We now turn to a discussion of
the results, beginning a summary of our core findings.
We then discuss some of the challenges we encountered
and the primary sources of uncertainty in our predictions.
Finally, we dicuss some limitations of our approach and
ways in which they might be remedied.

A. Core findings

1. Bayesian inference is an effective tool for
calibrating and quantifying uncertainty in Hall
thruster models. Our calibration procedure automat-
ically and robustly explored and optimized over a large
and high-dimensional parameter space. For all Qols,
it reduced uncertainty in predictions and improved the
model’s accuracy over the prior without manual interven-
tion. Additionally, we optimized over the entire dataset at
once, in parallel, instead of tuning the model parameters
per-condition. These results demonstrate the usefulness
of Bayesian methods for calibration in the context of Hall
thruster modeling.

2. The calibrated models fit the training data
well and can generalize to unseen test data at a
limited range of conditions. The models and parame-
terizations we used in our coupled framework captured
the correct trends in the training data across many back-
ground pressures. In addition to high training accuracy
across most Qols, we also observed <10% median test er-
ror on thrust and discharge current for both the SPT-100
and H9 thrusters. Additionally, modeling changes in this
work related to facility effects and anomalous transport
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bootstrapping with 200 samples.

were the primary cause of increased performance over our
previous work!? (see Appendix B). When extrapolating
SPT-100 data to orbit, the model correctly captured the
trend in discharge current, and obtained median errors
of <10% for both thrust and discharge current. However,
we predicted the wrong trend with thrust, likely due to a
lack of diversity in operating conditions in the training
dataset. This underscores the need for varied training
data when building predictive models.

3. The phenomenological anomalous transport
models were successful at predicting ion velocity
profiles at varying pressures. In this work, we in-
troduced a new four-parameter empirical model for the
anomalous electron transport and a simplified logistic
pressure-dependent model for the location of the accelera-
tion region. Together, these models were able to reproduce
the experimentally-observed trends in ion velocity with
high accuracy. In particular, the median ion velocity
error for the H9 was less than 5%. Our global sensitiv-
ity analysis in Sec. III E showed that, in line with both
our previous work'® and others®73!  the Hall thruster
model is highly sensitive to the anomalous electron trans-
port parameters. The four-parameter transport model
exhibits a better distribution of sensitivities across its
parameters than the two-zone model in our previous work.
Additionally, we were able to reduce the number of pa-
rameters of the pressure-dependent acceleration region
model from four to one without a loss in fidelity. Lastly,
we note that neglecting the upstream pressure shift, the
posterior anomalous transport parameters were very sim-
ilar between the H9 and SPT-100. We believe that the
four-parameter model with agnom = 1/16, Banom = 0.99,
Zanom == 1.05, and Lgnom =~ 0.38 may be a good starting

choice when simulating other thrusters at 300 V, though
it remains necessary to verify this with other codes. How-
ever, we note these that parameters may not generalize
well to thrusters operating at higher voltages and that
an explicit voltage dependence is needed to improve the
robustness of the model’s extrapolation capabilities.

B. Aleatoric uncertainty

As noted in Sec. II D, we neglected aleatoric uncertainty
in the operating conditions during data. This enabled us
to first perform inference on the epistemic variables alone,
then propagate forward the aleatoric uncertainty during
the prediction step. While convenient, this approach un-
derestimates the true aleatoric uncertainty and breaks
down in cases where the aleatoric uncertainty is large.
This was the case for the mass flow rate in our on-orbit
predictions of the SPT-100, which was only estimated and
not experimentally-measured. Accounting for this rigor-
ously would require marginalizing the aleatoric parameters
out of the likelihood, potentially using pseudo-marginal
MCMC.2* During prediction, we would then have to sam-
ple over a range of operating conditions or provide worst
case probabilistic predictions. While this approach would
provide a fuller picture of the relative roles of aleatoric
uncertainty, it would also incur a larger computational
cost. We leave an exploration of these more advanced
inference techniques for future work.



C. Model form error

While we focused primarily on aleatoric and epistemic
uncertainty in our work, there remained error due to our
modeling and parameter choices. For many Qols, our
chosen model system was capable of capturing the data
within epistemic and aleatoric uncertainty, but for others
the model and data differed even after calibration. This
uncertainty was most evident in predictions of ion velocity
for the SPT-100 and ion current density for the H9. In
both cases, the epistemic and aleatoric uncertainties were
low while large discrepancies from the experimental data
remained. This mismatch reflects the inability of the
chosen model form to accurately capture features of the
data, such as the off-axis peaks in the current density of
the H9 or the extended ion backflow region of the SPT-
100. The neutral ingestion model was another source of
model uncertainty, as it was only partially successful at
capturing trends in thrust with background pressure. A
robust accounting of model error in a Bayesian context
would be a welcome addition to our framework, but is an
active area of research.

Without the ability to incorporate model form error
into our calibration procedure, we can attempt to reduce
it by improving the flexibility of the models themselves.
Indeed, much of the improvement from our previous work
was enabled by iterative improvements to the thruster
component model and its parameterization. The analytic
plume model stands our as needing improvement, as it
cannot model distributions in which the peak current
density occurs away from the thruster centerline, such as
in the H9. To remedy this, it would either need to be
expanded with additional physical and geometric effects
(particularly regarding annular shape of the Hall thruster
and the associated focusing of the ion beam), or replaced
with a more complex model altogether. Improvements to
the cathode coupling model are also possible—in particu-
lar, to be able to capture some of the differences between
centrally- and externally-mounted cathodes.

The thruster model could also be improved to increase
its agreement with data. Charge exchange collisions,
not currently modeled by HallThruster.jl, should be a
high priority for future versions of the framework, as
they play a large role in pressure-related facility effects.??
Accurately modeling ion acceleration at different discharge
voltages and magnetic field strengths would also require
a more complex anomalous transport model with explicit
or implicit dependencies on these operating conditions.

The sensitivity analysis in Sec. III E shows that the Qols
are sensitive to most of thruster model parameters, with
the major exception of the neutral ingestion parameter f,.
The insensitivity of the model to this parameter implies
the need for a more comprehensive neutral flow model.
This model could be analytic, such as that of Frieman et
al.,!” or take the form of a combined model for the plume
and vacuum chamber33. Incorporating these more com-
plex models requires a much larger amount of information
about the thruster and test environment than we cur-
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rently use, including detailed 2-D thruster geometric and
magnetic field information, the distribution of cryopumps
and ion gauges throughout the chamber, and the geome-
try of the facility and beam dump. This information is
not always available in the literature, which would pose
challenges when calibrating these higher fidelity models.

D. Choice of quantities of interest

In both this work and our previous work, we compared
our simulation results to the same five Qols—cathode
coupling voltage, thrust, discharge current, ion velocity,
and ion current density. Each of these Qols helped the
calibration procedure reduce uncertainty for a different
set of parameters. Lacking data for one of them, as we
did for thrust in the H9 training dataset, led the model’s
thrust estimates to be poorly-constrained for this thruster.
However, the data available for some of our Qols was
limited, potentially reducing their efficacy in driving the
calibration procedure toward a predictive mdoel. For
instance, at each training point, the discharge voltage was
fixed at 300 V for both thrusters, and the discharge current
was between 4.25 and 4.5 A for the SPT-100 and exactly 15
A for the H9. This meant that the calibration procedure
was not forced to generalize across large changes in mass
flow rate, and had no ability to respond to changes in
voltage. The impact of this deficiency became apparent
in our attempted extrapolation to orbit, in which the
uncalibrated voltage response of the model overwhelmed
the calibrated pressure-related trends. Including a wider
range of conditions in the training data may have reduced
posterior uncertainty further and allowed the models to
better generalize to the test data.

Additional data sources are available that would further
help refine our parameter estimates and motive modeling
improvements. For instance, ion energy distribution func-
tion measurements made via retarding potential analyzer
and species fraction measurements obtained from E x B
probes both provide valuable physical insight into the
state and evolution of the Hall thruster plasma. Fur-
thermore, time-resolved data remains an important and
underutilized resource, and future versions of our model
may be strengthened by attempting to match these data.
Non-invasive laser measurements of the electron energy
distribution functions2!3* are an increasingly important
source of information about electron transport and plasma
heating. In each case, updating our framework to be able
to take advantage of these data will require changes to be
made to both the component models and the calibration
procedure. Finally, carbon back-sputter®® and electrical
and circuit effects® stand out as two pressing facility ef-
fects which our framework does not attempt to model.
Thanks to the modularity and usability changes made
for this work, incorporating models for these phenomena
would not be prohibitively difficult, and doing so is a
priority for future work.



V. CONCLUSION

In this work, we developed an improved framework for
rapid prediction of Hall thruster performance. By cou-
pling cathode, thruster, and plume models with Bayesian
inference, we can calibrate model parameters to data and
predict important quantities with detailed uncertainty
quantification. We used this model to reduce the uncer-
tainty in many key parameters and obtained improved
training performance over our previous work. We then
demonstrated good generalization outside of the mod-
els’ training dataset and attempted to extrapolate the
performance of a thruster operating on the ground to
orbit. Furthermore we extended the model to simulate a
magnetically-shielded thruster in addition to the SPT-100.
These improvements were made possible due to model-
ing improvements, including a new empirical anomalous
transport model, as well as changes to our Bayesian like-
lihood.

Despite some challenges, including a lack of thrust data
for the H9 and a small range of operating conditions in
the training dataset, the current model serves both as a
good standalone Hall thruster model as well as a useful
baseline for future extensions. By incorporating new and
upgraded models as well as additional data sources, we
plan to continue improving the framework’s predictive
power and generality.
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Appendix A: Selected data from the Express satellites

In this appendix, we summarize the data from the
Russian Express satellites that we used in our attempt
to predict the on-orbit performance of the SPT-100 in
Sec. IITC. This data was originally reported by Manzella
et al. in 2001.% Following the analysis of Byrne and
Jorns,3% we use measurements only from thrusters that
had been fired for over 30 hours in space, which was 50%
longer than the manufacturer’s recommended burn-in
time. The thrusters meeting this criteria were thrusters
RT2 from Express-A #2 and RT1, T4, and RT4 from
Express-A #3. We report in Tab. X thrust measurements
averaged across these thrusters. We note that the mass
flow rate was not measured in either condition and that
the discharge voltage on-orbit was 310 V, 10 V higher
than the nominal valus from the ground tests.

Appendix B: Intermediate model results

In this appendix, we show selected results for the SPT-
100 Hall thruster using an “intermediate model” between
the one in our previous paper'® and the one presented
in this work. We employ the inference and calibration
procedure developed in Sec. II C but use a model param-
eterization similar to our previous work. Specifically, we
use a two-zone Bohm-like anomalous transport profile,
a four-parameter pressure shift model, and no wall loss
or neutral ingestion parameters. This exercise allows us
to assess how much of the improvement over our previ-
ous work stems from better sampling versus improved
modeling.

First, in Fig. 19 we show the discharge current and
thrust predicted by the model after calibration. In con-
trast to the model of the present work, the discharge
current of the previous model lies above the experimen-
tal value for all pressures and has an exaggerated pres-
sure dependence. The thrust also exhibits overly-strong
pressure-related trends. In Fig. 20, we show the predicted
ion velocity profiles of the previous model as a function
of background pressure. The pressure shift model used
in our previous work captures the upstream displacement
of the acceleration region well but is over-parameterized,
requiring four parameters instead of just one as in the
present work. Additionally, the new anomalous transport
model better captures the shape and steepness of the
ion velocity profiles. Finally, in Tab. XI, we compare
the training error metrics of the previous model to those
of the present model. We find that the present model
exhibits lower mean and median errors in thrust and
discharge current by a factor of 60-90%. In all, these
findings are approximately as good as those obtained in
our previous work, although predict more exaggerated
trends in discharge current and thrust with pressure than
are observed in the data. These results suggest that the
updated model parameterization played a larger role in
improving our results from our previous paper than the
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TABLE X: Operational and performance data obtained on the ground and in orbit from two Express-A satellites.
Data aggregated from Ref. 3. Mass flow rates (*) were not directly measured and are instead calculated in Ref. 3 by
assuming a total xenon flow rate of 5.3 mg/s and a 7% cathode flow fraction.

Pressure [Torr] e [mg/s] Vb [V] Ip [A] T [mN] Note
2x107° 4.29* 300 4.5 84.6 + 2.4 Ground tests
2x 1078 4.29* 310 4.6+0.1 83.3£3.2 On-orbit measurements

Reported uncertainties are + 2 standard deviations.
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Appendix C: Posterior parameter distributions
Z
= In this appendix, we include plots of the 1-D and 2-D
E marginal posterior distributions for each model parame-
& ter obtained with Bayesian inference. Due to the large
number of variables, we have broken these figures up by
0] component for clarity. We plot in Figs. 21, 22, and 23
the cathode, plume, and thruster parameter marginals,
respectively, for the SPT-100 operating on xenon. The
60 | same distributions for the H9 operating on krypton are
1075 in Figs. 24, 25, and 26, respectively.
Background pressure [Torr] We make a few observations beyond those made in
Sec. IIT A. For both thrusters, the transport barrier length
FIG. 19: (a) Discharge current and (b) thrust vs Lanom correlates with agnom and clusters at the upper
pressure for the SPT-100 using the model of Ref. 10. end of its range, indicating that higher values may have

given better results. Additionally, the anomalous pressure
shift parameter Azgpom correlates with zg.,om, since both
parameters shift axially the anomalous electron collision
frequency. Across all components, we observe largely
unimodal parameter distributions with the exception of
co for the H9 plume, which has two peaks. This parameter
controls the pressure dependence on the divergence angle.
Examining Fig. 25, it is not immediately clear why this
changes to the inference procedure. should be as we fit the trends with pressure well.
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TABLE XI

26

: Training error metrics of the intermediate model and the model of the present work. Symbols have the

same meanings as in Tab. VI

Qol ¢ [%) Distribution 1450 L o uso/€
Vee [V] 1 Posterior (old model) 2.6 2.6 0.1 2.6
Posterior (new model) 2.5 2.7 0.5 2.5
Te [mN] 1 Posterior (old model) 114 11.2 0.4 114
Posterior (new model) 3.3 3.5 0.5 3.3
Ip [A] 10 Posterior (old model) 37.6 38 0.5 3.8
Posterior (new model) 3.3 3.9 1.4 0.3
Uion [m/s] 5 Posterior (old model) 13.8 16.6 0.5 2.8
Posterior (new model) 12.2 13.8 1.2 2.4
Jion [A/m?] 20 Posterior (old model) 34.7 33 0.4 1.7
Posterior (new model) 11.4 18.7 1 0.6
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Appendix D: Sobol’ analysis on the posterior

Figures 27a and 27b show the Sobol’ total effect indices
for the SPT-100 and H9, respectively, computed using
samples of the posterior distribution. We caution that
these results should not be interpreted quantitatively.28:3°
Variance-based sensitivity analysis assumes the variables
are independent and uncorrelated, which is not the case
under the posterior. The effects of highly-correlated pa-
rameters, such as Zgnom and Azgnom, may therefore be

mixed and difficult to distinguish from one another. Still,
these results are helpful in a qualitative sense to assess
the relative importance of the each parameter after cali-
bration, where they have restricted ranges compared to
the prior.

Compared to the results obtained from the prior dis-
tributions in Sec. III E, the Qols are sensitive to a larger
number of parameters. While the cathode coupling volt-
age was sensitive mainly to V,,. on the prior, on the
posterior distributions the influences of the other cathode



28

H9, Kr
Cathode parameters
47,51
A, 45.01
42,54
6_ 4
‘4
a
n
301 -
§
201 -
0o % 42.545.047.5 4 6 20 30
Pr P Te Vovae

FIG. 24: 1-D and 2-D marginal posterior distributions for the H9 cathode parameters.
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FIG. 25: 1-D and 2-D marginal posterior distributions for the H9 plume parameters.
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FIG. 27: Sobol’ total indices computed over the posterior parameter distributions for (a) the SPT-100 operating on
xenon and (b) the H9 operating on krypton. Error bars represent 5th and 95th percentile index estimates obtained via
bootstrapping with 200 samples.

properties become more important. The SPT-100’s more
complex cathode coupling voltage curve makes it sensitive
to all of the cathode parameters, while the H9 is only
sensitive to V.. and Pr. Under the posterior, the neutral
density and other anomalous transport parameters have
also become more important, and for the SPT-100 the
thrust is also sensitive to the cathode variables. Lastly,
whereas under the prior the peak current density was
only sensitive to some of the plume properties, under the
posterior it is sensitive to a number of thruster parame-
ters. The more equally-distributed parameter sensitivities
under the posterior shows that most parameters have a
strong impact on at least one Qol, and that our parame-
terization is reasonably well-chosen.
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