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Abstract 

Two-dimensional (axial-azimuthal) simulations of a Hall thruster are performed using 
the open-source particle-in-cell code WarpX. The simulation conditions are cho-
sen to match those of the axial-azimuthal benchmark first reported by Charoy et al. 
in 2019. A range of numerical and solver parameters is investigated in order to find 
those which yield the best performance. It is found that WarpX completes the bench-
mark case in 3.8 days on an Nvidia V100 GPU, and in as low as 1.5 days on a more 
recent Nvidia H100 GPU. Of the numerical parameters investigated, it is determined 
that the field-solve tolerance and particle resampling thresholds have the largest 
effect on the simulation wall time and that particle resampling may artificially widen 
electron velocity distribution functions, leading to unphysical heating. A semi-implicit 
scheme for the electrostatic field solve is tested and is found to produce results consist-
ent to within 10% of the benchmark in less than twelve hours. The scaling properties 
of the electrostatic solver to multiple GPUs are also assessed on a uniform plasma 
test problem. The results of this work are discussed in the context of advancements 
in GPU hardware and the suitability of kinetic Hall thruster simulations for engineering 
applications.
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Introduction
Kinetic whole-device simulations of Hall thruster discharges have long been too expen-
sive to use in engineering contexts. While capable of resolving the physics driving and 
growth and saturation of microinstabilities that lead to so-called “anomalous” elec-
tron transport [1], such simulations require grid spacings on the scale of the electron 
Debye length ( ∼ 10−6m ) and timesteps on the order of the electron plasma frequency 
( ∼ 10−12s ). At the same time the simulation must run long enough to capture the long 
length- and time-scales over which the Hall thruster plasma achieves a quasi-steady 
state (around 10−1 m and 10−3 s, respectively) to be useful for simulations of real devices. 
These stringent requirements and the long run-times that result have led to kinetic sim-
ulations being considered inadequate for engineering purposes.

As a result, the community has adopted other approaches for incorporating tur-
bulent effects into Hall thruster simulations. Most commonly, researchers model 
anomalous electron transport using Bohm diffusion modified with spatially-varying 
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scaling coefficients. This approach has been successful at producing converged simu-
lations that match experimental data [2], but the scaling coefficients are not general-
izable across thrusters or operating conditions and must be tuned for each case [3]. 
To address this lack of generality, many authors have derived first-principles [4, 5] 
or data-driven [6] closure models of how the instability-induced electron transport 
scale with fluid plasma properties such as temperature, density, and velocity. To date, 
though, no such model has proved capable enough for general engineering and design 
applications [7].

In light of the shortcomings of these lower-fidelity approaches, and with recent 
advancements in computing hardware, there has been renewed interest in simulating 
Hall thrusters kinetically [8]. In particular, the advent of large-scale multi-GPU com-
puting has recently produced unprecedented speed-ups in kinetic simulations of other 
plasma devices, such as laser plasmas [9], tokamaks [10] and plasma wakefield accelera-
tors [11]. GPUs have also been successfully applied to low-temperature plasma applica-
tions [12], including the low-density plumes of electric propulsion systems [13]. These 
successes suggest that GPUs may accelerate kinetic Hall thruster simulations.

In this work, we apply WarpX, an open-source particle-in-cell (PIC) code, to the 
problem of Hall thruster simulation. WarpX was designed to scale to the largest 
supercomputing clusters [14], can run on CPUs and GPUs, and is highly extensible. 
As such, it serves as a good starting point for developing Hall thruster codes with sim-
ilar scalability. We use WarpX to simulate the 2-D axial-azimuthal E × B benchmark of 
Charoy et al. [15], which models the plasma instabilities thought to drive anomalous 
electron transport in a simplified Hall thruster geometry. We find the following: 

1.	 Using an explicit scheme, WarpX outperforms previously-published benchmark 
results on a single GPU, with completion times as low as 38 hours depending on the 
numerical parameters.

2.	 The results of the benchmark are insensitive to the precision of the Poisson solver.
3.	 Adopting a semi-implicit scheme for solving Poisson’s equation reduces the compu-

tational cost of the benchmark simulation. We are able to complete the benchmark 
simulation in fewer than twelve hours, and expect that larger simulations would ben-
efit even more strongly from the use of this scheme.

4.	 While WarpX’s particle routines scale well as problems grow to multiple GPUs, the 
field solver lags behind. As demonstrated on a uniform plasma test problem, at larger 
problem sizes (32 GPUs), over 90% of the computational cost comes from MPI com-
munication.

We note that paper is expanded and revised from a paper presented at the 2024 Inter-
national Electric Propulsion Conference [16]. In that paper, we investigated the effect 
of numerical parameters beyond those investigated in the present work on the accu-
racy and computational cost of the benchmark simulation. These included the parti-
cle shape function and the frequency and presence of electron-ion collision checks. In 
that work, however, we did not investigate the scaling of the code to multiple GPUs, 
nor did we investigate the semi-implicit scheme mentioned above. We refer interested 
readers to that paper for more details.
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This paper is organized as follows. In Methods, we describe the conditions of the 
benchmark, the capabilities of WarpX, and our modifications to WarpX to support Hall 
thruster simulations. We provide details of the numerical parameters and algorithms 
investigated in our simulations, describe our application of a semi-implicit numerical 
scheme, and set up an electrostatic uniform plasma scaling study. In Results, we then 
present the results of our studies. Finally, in  the Conclusion, we conclude with some 
thoughts on the implications for our work on the use of particle-in-cell simulations in 
the engineering and design of Hall thrusters.

Methods
Benchmark simulation

In this work, we simulate Case 2a of the LANDMARK low-temperature benchmark-
ing effort [17]. This case is designed to capture the main kinetic effects governing Hall 
thruster discharges—namely the onset and growth of drift-driven turbulence as well as 
plasma aceleration in the axial direction. In particular, we compare our efforts to results 
of several codes from throughout the community, reported by T. Charoy et al in 2019 
[15]. In this section, we describe the benchmark conditions; the reader is referred to Ref. 
[15] for a more detailed description.

The benchmark is a two-dimensional axial-azimuthal particle-in cell simulation of a 
simplified Hall thruster geometry. We show the simulation domain in Fig. 1, where the 
axial (x) and azimuthal (y) dimensions have lengths of Lx = 2.5 cm and Ly = 1.28 cm , 
respectively. Our simulations assume the azimuthal dimension is periodic and do not 
consider curvature effects. We apply an external radial magnetic field Bz(x) throughout 
the domain, with the maximum field strength of 10 mT occuring at x = 0.75 cm.

We employ a grid resolution of 512 cells in the axial direction ( �x = 4.88× 10−5 m ) 
in the axial direction and 256 cells in the azimuthal direction ( �y = 5× 10−5 m ), with 
a timestep of 5× 10−12 s . These conditions are sufficient to resolve both the electron 
Debye length as well as the electron plasma frequency, which are critical to the stability 
and accuracy of the explicit particle-in-cell method.

Fig. 1  The 2-D axial-azimuthal benchmark simulation domain
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The benchmark does not model neutral atoms; we instead inject electron-ion pairs 
according to a ionization rate profile bounded by x = 0.25 cm and x = 1 cm . This 
“injection region” is depicted in darker blue in Fig. 1. Injecting particles in this man-
ner allows simulations to avoid resolving both ionization oscillations and start-up 
transients and achieve steady state in tens of microseconds. The temperatures of the 
newly-injected electrons and ions are 10 and 0.5 eV, respectively. Between the anode 
at x = 0 cm and a “virtual cathode” at x = 2.4 cm , we apply a DC voltage of 200 V. 
To maintain current continuity, any net current that crosses the anode plane is re-
injected as electron current at the cathode.

The simulation begins as a plasma with density ne = 5× 1016 m−3 , and electron and 
ion temperatures of 10 and 0.5 eV, respectively. We run the simulation for 20µ s and 
report plasma properties averaged over the last four microseconds of the run. The 
original benchmark considers three cases, differentiated by the weight of the compu-
tational macroparticles, and therefore by the number of particles in the simulation at 
startup. Case 1 starts with 150 particles per cell, Case 2 with 75, and Case 3 has 300. 
In this work, we simulate all three of these cases, but treat Case 2 as the baseline case 
for our subsequent studies. Table 1 contains a summary of the benchmark simulation 
parameters.

Table 1  Parameters of the benchmark simulations

Baseline parameters

  Axial domain length, Lx 2.5 cm

  Azimuthal domain length, Ly 1.28 cm

  Axial resolution, Nx 512

  Azimuthal resolution, Ny 256

  Time step, �t 5× 10−12 s

  Discharge voltage, U0 200 V

  Maximum magnetic field, Bmax 10−12 T

  Initial plasma density, n0 5× 1016 m−3

  Initial electron temperature, Te,0 10 eV

  Initial ion temperature, Ti,0 0.5 eV

  Simulation duration, tmax 20× 10−6 s

  Averaging start time, tavg 16× 10−6 s

  Particle precision Single

  Field-solve precision Double

  Field gathering algorithm Energy-conserving

Additional parameters

  Initial particles per cell 75, 150, 300

  Resampling: max particles per cell no resampling, 200, 250, 300

  Particle sort interval 10, 50, 100, 500, 1000

  Multigrid precision 10−2 , 10−3 , 10−5 , 10−6

Semi-implicit solver case C �t Nx Ny

  2x 8 1× 10−11 s 256 128

  4x 16 2× 10−11 s 128 64

  8x 8 4× 10−11 s 64 32
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Extending WarpX for Hall thruster simulations

WarpX is an open-source, time-dependent, relativistic, electrostatic and electro-
magnetic particle-in-cell code developed as part of the United States Department of 
Energy’s Exascale Computing Project [14]. While the primary application of WarpX 
is simulating high-energy laser-plasma interactions [11], the generality of the code’s 
algorithms makes it well-suited for a wide variety of plasma physics. The code is 
designed to scale well to very large problem sizes, on both CPU and GPU-dominated 
clusters [18].

As with most particle-in-cell codes, WarpX performs four main actions at each 
timestep when running an electrostatic simulation. These are: 

1.	 Gather fields to particles: The electric and magnetic fields on the grid are interpo-
lated to the particles using a prescribed kernel or “shape function”. In this work, we 
use the energy-conserving field gathering scheme originally described by Lewis [19], 
which requires fields be stored on a staggered grid. Recent work has demonstrated 
that this scheme helps stabilize PIC simulations which under-resolve the Debye 
length and reduces the degree of numerical heating [20]. This is an alternative to the 
classic momentum-conserving scheme, which co-locates field quantities at nodes 
and can lead to aliasing and checkering artifacts in certain situations [21].

2.	 Push particles: The particles move to new positions based on their velocities and 
the timestep, and accelerate as a response to the fields gathered in the previous step. 
WarpX uses a relativistic extension of the well-known Boris scheme for particle 
advancement. This algorithm is second-order in time and energy-conserving, mak-
ing it well-suited for capturing particle orbits around magnetic field lines. WarpX 
fuses this step with the field-gathering step above into a single kernel which can be 
efficiently executed on GPUs.

3.	 Deposit charge: The charge density ρ and current density j are computed on the 
grid from the particle positions, weights, and charges. This interpolation uses a shape 
function which matches that used to gather the fields onto the particles.

4.	 Solve fields: Given the charge density on the grid and appropriate boundary condi-
tions, the code solves Poisson’s equation (Eq. 1) to determine the electrostatic poten-
tial U and electric field E : 

where ǫ0 is the permittivity of free space, 8.854 × 10−12 F/m . The electric field is then 
gathered to the particles and the loop is repeated.

These steps on their own are not sufficient to simulate Hall thruster discharges, which 
include both ionization, which adds charged particles to the domain throughout the sim-
ulation and a cathode that injects sufficient electrons to neutralize the ion beam ejected 
by the thruster. We must therefore extend WarpX to handle these effects.

Extensions for benchmark simulations

Users running WarpX from its Python interface can specify callback functions which 
are triggered at specific points in the computational cycle and can access WarpX’s 

(1)−∇2U = ∇ · E = ρ/ǫ0,

https://ecp-warpx.github.io/
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internal data-structures. There are three parts of the benchmark not included in War-
pX’s core functionality and require new implementations. These are 

1.	 The creation of particles in the injection region,
2.	 The injection of particles at the cathode to support current continuity, and
3.	 The zero-volt internal Dirichlet boundary condition at the cathode plane.

Here, we describe each of these components and their implementation into WarpX. 
We illustrate how each of these extensions slots into WarpX’s main loop in Fig. 2.

1. Particle injection

This callback creates electron-ion pairs in the injection region according to an ioni-
zation profile at each timestep. Per the benchmark conditions [15], the ionization rate 
varies axially as

In the above, S0 = 5.23× 1023 m−3s−1 is the maximum ionization rate, x1 = 0.25 cm , 
x2 = 1 cm , and xm = (x1 + x2)/2 = 0.625 cm . We compute the number of electron-ion 
pairs to be injected at each timestep by integrating this function over domain and 
multiplying by the timestep, giving

Here, W0 is the base particle weight, or the number of real particles represented by a 
single computational macroparticle at simulation start-up, given by

(2)S(x) =
S0 cos π x−xm

x2−x1
x1 ≤ x ≤ x2

0 otherwise.

(3)Ninject,0 =
2S0

πW0
Ly(x2 − x1)�t.

Fig. 2  WarpX’s main computation loop, including the Python callbacks implemented to support the 
benchmark simulations
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To implement this in WarpX, we define a callback that executes every timestep in the 
particleinjection position. This takes place after the particles have been pushed 
to new positions, but before the particles’ charge is deposited onto the grid. We inject 
either ⌈Ninject,0⌉ or ⌊Ninject,0⌋ electron-ion pairs with respective probabilities P and 1− P , 
with P equal to the fractional part of Ninject . The axial and azimuthal positions of a 
newly-created electron-ion pair can be computed using inverse transform sampling and 
are given by [15]

We sample r1 and r2 from uniform distributions on [0,1], the electron and ion veloci-
ties from 3-D Maxwellian distributions corresponding to their respective temperatures, 
and set the weights of both species to W0 . We then use WarpX’s add_particles func-
tion to add the newly generated particles to their containers.

2. Cathode injection

To maintain current continuity, the benchmark prescribes that all net charge leaving the 
domain through the anode boundary returns as electron current at the cathode [15]. To 
implement this in WarpX, we use the code’s BoundaryScrapingDiagnostics fea-
ture. This diagnostic allocates a buffer that logs the number and type of particles that 
leave the domain. At each timestep, we record the number of electrons ( �Ne ) and ions 
( �Ni ) that have crossed the anode plane. We then inject �Ni −�Ne electrons at the 
cathode plane ( x = xe = 2.4 cm ). The new electrons have weight W0 , are distributed 
uniformly in the azimuthal dimension, and have velocities drawn from a stationary 3-D 
Maxwellian distribution function with temperature 10 eV. We clear the boundary buffer 
after each step to avoid an increasing memory footprint over time.

3. Potential adjustment

The benchmark adjusts the potential every timestep to enforce a 200 V drop between the 
anode and cathode lines [15]. To make this adjustment, we average the potential com-
puted by WarpX ( U(x, y) ) along the cathode line, giving Ue = (

∫ Ly
0 U(xe, y)dy)/Ly . We 

then compute the corrected electrostatic potential φ(x, y):

To implement this procedure in WarpX, we create a callback in the afterEsolve 
position, which ensures that the adjustment will be invoked directly after Poisson’s equa-
tion has been solved. We then average the potential interpolated to the cathode line over 
the azimuthal direction to get Ue and apply the correction given by Eq. 7. Finally, we dif-
ferentiate Eq. 7 to get a correction to the axial electric field:

(4)W0 =
n0LxLy

Nppc,iniNxNy
.

(5)xi = xm + sin−1(2r1 − 1)
x2 − x1

π
,

(6)yi = r2Ly.

(7)φ(x, y) = U(x, y)−
x

xe
Ue.
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where Ex = −∂U/∂x is the uncorrected axial electric field.

Simulation outputs

Every 5000 iterations, we output the electric field vector, electrostatic potential, and 
charge densities of all species evaluated at the cell centers. We additionally compute the 
moments of the each species’ velocity distribution function (VDF) at every cell. In par-
ticular, we calculate the zeroth (density), first (bulk velocity vector), second (pressure 
tensor), and contracted third (heat flux vector) moments. We also save the number of 
particles and total energy in the system at each timestep. Lastly, we obtain code profiling 
information from the TinyProfiler tool built into WarpX, allowing us to investigate the 
costs of different parts of the code.

Parameter investigation

In addition to demonstrating the feasibility of Hall thrusters in WarpX, we also inves-
tigate in this work the sensitivity of the simulation results and performance to sev-
eral numerical options. We describe these below along with the range of investigated 
parameters.

Particle sorting interval  When running on GPUs, WarpX periodically sorts particles 
so that particles that are physically near to one another are also nearby in memory [18]. 
This improves performance by improving memory locality during the deposition step, 
where particle quantities are interpolated to the grid. However, it also introduces a small 
performance overhead (about 80% of the cost of a particle push). To find the optimal set-
ting, we vary the sorting interval between 5 and 1000 iterations.

Particle resampling parameters  WarpX supports particle resampling, which is useful 
to ensure the simulation is adequately resolved and has an even distribution of com-
putational macro-particles throughout the domain. This is particularly useful if the 
simulation features continuous particle injection, as ours does, which could lead to an 
unnecessary build-up of particles in the injection region and a corresponding reduction 
in simulation speed. In this work, we use the leveling-thinning algorithm developed by 
Muraviev et al. [22], which is WarpX’s default resampling option. This algorithm down-
samples (merges) particles while trying to maintain an accurate representation of their 
velocity distribution function. This resampling is performed per-species and is con-
trolled by three parameters: 

1.	 resampling_algorithm_target_ratio, which corresponds to the ratio of 
the number of particles before a resampling step to the number after a resampling 
step.

2.	 resampling_min_ppc, which is the threshold number of particles per cell below 
which a cell will not be resampled.

(8)Ex = −
∂φ

∂x
= −

∂

∂x
U(x, y)+

Ue

xe
= Ex +

Ue

xe
,
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3.	 resampling_trigger_max_avg_ppc, which defines the maximum number of 
particles per cell, averaged over the whole domain, above which resampling is trig-
gered.

In our simulations, we set the first parameter to the WarpX default of 1.5, the second to 
75 particles per cell, and vary the maximum particles per cell between 200 and 300.

Field solve tolerance  For electrostatic simulations, WarpX uses a multigrid method to 
solve Poisson’s equation to obtain the electric field and potential. Starting from the fields 
solved at the previous timestep, this method iteratively reduces the error in the solution 
of Poisson’s equation until it reaches a user-specified relative tolerance (hereafter, “mul-
tigrid precision”). We test tolerances between 10−2 and 10−6 in this paper.

Semi‑implicit scheme  Finally, we evaluate in this work the usefulness of a semi-implicit 
algorithm on accelerating kinetic Hall thruster simulations. This algorithm, developed 
by D. Barnes (see Appendix of Ref. [23]) and recently implemented in WarpX by Groe-
newald et al. [24], replaces the normal Poisson’s equation (Eq. 1) for the potential with

where C > 1 is an adjustable constant and ωpe =
√

e2ne/meǫ0 is the plasma frequency. 
This modified Poisson’s equation acts stabilize the electron plasma mode by artificially 
raising the electron plasma frequency. In combination with the energy-conserving gath-
ering scheme, this choice allows larger cell sizes and timesteps than are typical in explicit 
PIC schemes while leaving modes uncoupled to the electron plasma mode unaffected. A 
recent study found that this scheme was able to accelerate simulations of an electrostatic 
Penning discharge by two orders of magnitude [24], which shows promise for its use in 
Hall thruster simulations. In this paper, we evaluate the semi-implicit scheme at three 
grid resolutions: 2x ( �t = 1× 10−11 s , Nx = 256 , Ny = 128 ), 4x ( �t = 2× 10−11 s , 
Nx = 128 , Ny = 64 ) and 8x ( �t = 4 × 10−11 s , Nx = 64 , Ny = 32 , while leaving all other 
parameters unchanged.

Barnes’ algorithm resembles the well-known Direct-Implicit (DI) scheme [25], which 
is known to suffer from numerical heating at large timesteps [20]. To address this, we 
set C to 8 for the 2x and 8x cases and 16 for the 4x and cases, as these values yielded 
the smallest deviation in the time-averaged electron temperature from the baseline 
simulation.

Summary of simulation parameters

Table  1 summarizes the parameters employed in this work. The top half of the table 
contains the benchmark parameters common to all simulations, discussed in  the sec-
tion describing the  Benchmark simulation, while the bottom half shows the ranges of 
the variable numerical parameters discussed above. The parameters of the baseline case 
are underlined. For the semi-implicit simulations, we use an initial particle count of 75 

(9)∇ ·

(

1+
1

4
C�t2ω2

pe

)

∇φ = −ene/ǫ0,
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particles per cell, a multigrid precision of 10−3 , a sorting interval of 500 iterations, and 
no resampling.

We perform all but one of our simulations on a single Nvidia H100 GPU, with 80 
GB of onboard memory [26]. This is a new GPU, launched in 2023 designed primar-
ily for machine learning workloads but with large general-purpose compute capability. 
To determine how much of WarpX’s performance compared to the benchmark depends 
on the code architecture versus advancements in hardware in the intervening five years, 
we run a single simulation using the baseline case parameters on an Nvidia V100. The 
V100 GPU was released in 2017 and is thus contemporaneous with the computational 
hardware used in the 2019 benchmark. We employ single-precision arithmetic for the 
particles and double-precision arithmetic for the field solve. As GPUs typically have sig-
nificantly more single-precision processing power than double-precision, mixing pre-
cisions in this way accelerates the simulation while maintaining an acceptable level of 
accuracy.

Scaling

Finally, we analyze the scaling of WarpX’s electrostatic (ES) solver to multiple GPUs on 
both a single node and across several nodes. To that end, we perform 3-D simulations 
of a uniform plasma in a periodic box. This selection has several advantages over the 
Hall thruster benchmark simulation. First, these simulations converge quickly (typi-
cally a few minutes) as opposed to the tens of hours required for the 2-D axial-azimuthal 
simulations. Second, they have very simple physics, allowing us to focus entirely on the 
scalability of WarpX’s numerics. Finally, they do not rely on WarpX’s python exten-
sion interface. The callbacks we have implemented, while performant at the scale of the 
benchmark, may not scale well to very large problems.

As the scalability of the particle push, charge deposition, and field gathering, as well 
as that of the electromagnetic (EM) solver have all been assessed in the past [18], we 
focus here on the scaling of the grid-based electrostatic field solver. In Table 2, we show 
the parameters used for our scaling tests. tarting with a workload of 32 cells in each 
dimension (workload 1), we gradually increase the grid resolution, incrementally dou-
bling the resolution in each dimension, until the computation cannot fit in memory. 

Table 2  Parameters for uniform plasma scaling tests

Nx Ny Nz Workload

Minimum workload 32 32 32 20(1)

Maximum workload 1024 1024 512 214(16384)

Particles per cell 1

Minimum GPUs 1

Maximum GPUs 32

GPUs per node 8

Domain size: 40× 10−6 m

Plasma density 1× 1025 m−3

Electron thermal velocity 0.01 c

Timestep size 10−14 s

Maximum iterations 250
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The cluster we used has eight GPUs per node, so runs with 16 and 32 GPUs used two 
and three nodes, respectively. For a single GPU, workload 213 is the largest able to run, 
with (Nx,Ny,Nz) = (1024, 512, 512) , while workload 214 can run on two, four, and eight 
GPUs. For each workload and GPU count, we record the wall time after the simulation 
completed, as measured by WarpX. We assign one MPI rank per GPU and incrementally 
decompose the domain as described in Table 3.

Results
Benchmark simulations

In Table 5, we summarize the performance, in terms of wall time, of each of our simula-
tions. This table includes only the results obtained using the explicit solver on the full-
size grids. We first focus on the the results of our baseline simulation, highlighted in 
grey in this table, as well as the other cases from the 2019 benchmark. For the baseline 
simulation, we initialized the domain with 75 particles per cell, performed no resam-
pling, sorted the particles every 500 iterations, used linear particle shape functions for 
the particles, and set the multigrid precision to 10−5 . In Fig. 3, we compare the results 
of this simulation to those of Case 2 of the 2019 benchmark. As that benchmark con-
tained a number of different codes with slightly varying results, we show in light red the 
range of the benchmark results, rather than the result of any one code. It is apparent that 
our results lie well within the acceptable range of the benchmark, and our extensions to 
WarpX have been successful.

Table 3  MPI domain decomposition and GPU allocation strategy for scaling tests

Number of GPUs

1 2 4 8 16 32

Nodes 1 1 1 1 2 4

MPI ranks in x-direction 1 2 2 2 4 4

MPI ranks in y-direction 1 1 2 2 2 4

MPI ranks in z-direction 1 1 1 2 2 4

Fig. 3  a Electric field, b ion number density, and c electron temperature for the baseline simulation. The 
range of benchmark results from Case 2 of Charoy et al, 2019 [15] is indicated in pale red
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WarpX completed the full 20 µ s simulation using the explicit solver in 1.81 days on 
the H100 GPU and 3.81 days on the V100 GPU. In comparison, typical wall times for 
this case ranged from 3 to 11 days in the 2019 benchmark, with the best result achieved 
by a code developed by the Princeton Plasma Physics Laboratory (PPPL, 2.5 days on 112 
CPUs). The only GPU-based code that participated in the 2019 effort required 9 days to 
finish Case 2 on an Nvidia A100 GPU, a more powerful contemporary of the V100 [27, 
28]. However, this code used an implicit particle pusher with a much larger computa-
tional overhead than the explicit pushing scheme employed by our WarpX simulations. 
As such, it is not directly comparable to our results.

We also report in Table 4 a summary of the time spent in by WarpX in different parts 
of the PIC cycle (see Fig. 2) in the first two cases. Cases 1 and 3—which have two and 
four times as many particles, respectively, as Case 2—took 58% and 179% longer than 
Case 2 to complete. In the baseline case, the computational time was split roughly evenly 
between particle-based and grid-based parts of the code. As the particle count increased 
in Cases 1 and 3 and grid size remained constant, the fraction of time WarpX spent 
in the particle routines increased by over 50%. We illustrate these data graphically in 
Fig. 4a. In Fig. 4b, we show a roofline plot of the performance on an H100 of the three 
main kernels of the PIC loop on the baseline case. We find that the gather-and-push and 
charge deposition kernels are memory-bound, limited primarily by the bandwidth of the 
DRAM and L2 caches. In contrast, the field solver is operating well-below the memory 
streaming limit. This may be due to the relatively small problem size.

In Table  5, we report the wall-clock time taken for each of the simulations in our 
numerical parameter investigation. We also report the time taken by an optimized 
explicit simulation, with numerical parameters chosen from the best results of each of 
our investigations. For this simulation we employed resampling at a 300 particle-per-cell 
resampling threshold, a sorting interval of 100 iterations, and a multigrid precision of 
10−3.

Effect of resampling

As expected, reducing the maximum allowable number of particles per cell improved 
performance, with a reduction in wall time of up to 25% at a threshold of 200 particles 
per cell. In contrast, a resampling threshold of 300 particles per cell had minimal effect 
on runtime (a decrease of about 1 hour), as the steady state particle count of the baseline 
simulation was 290 particles per cell of each species. Resampling was thus only triggered 
during the startup transient.

Despite the performance improvements made possible by resampling, we found that 
thresholds lower than the steady-state particle count adversely affected the accuracy of 
the simulation. In particular, while the time-averaged density and electric field profiles 
were very similar across all resampling thresholds, the electron temperature at the right 
boundary depended on the particular threshold chosen.

In Fig.  5, we show how the electron temperature changed as the maximum aver-
age particles per cell increased from 200 to 300 particles per cell. While the solution 
remains in good agreement with the benchmark result upstream of the location of 
maximum magnetic field, it deviates in the downstream half of the domain. At the 
right boundary, the electron temperature at a maximum resampling threshold of 200 
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particles per cell is 7 eV higher than that of the baseline case. To investigate why this 
might occur, we plot in Fig.  6 the ion density and electron temperature at the last 
timestep of the baseline case. This figure shows that in the region downstream of the 
peak magnetic field ( x > 0.75 m), a long-wavelength mode develops where the elec-
tron temperature and density vary in phase with one another. In the high-density 

Fig. 4  a Performance of each main component of the PIC loop on each benchmark case. Data are the 
same as in Table 4. b Roofline plot of the performance of the three main kernels of WarpX’s GPU solver on an 
H100 GPU for the baseline case (Case 2). L1 and L2 cache bandwidths are shown in addition to that of main 
memory. Additionally, we show the thresholds for single-precision (“Single”) and double-precision (“Double”) 
FLOPs

Table 5  Recorded wall times for each parameter set

The baseline case parameters are highlighted in grey and the results of the semi-implicit solver are indicated in yellow
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regions of this mode, the particle density may exceed the threshold for resampling. 
Resampling leaves the density (and therefore electric field, via Poisson’s equation) 
unchanged, but may result in a small spread of the velocity distribution function, 
if the particle resolution in these high-density regions is not sufficiently high. This 
could then produce the higher electron temperatures observed in the right half of the 
domain. In Fig. 7, we show the electron velocity distribution function just upstream 
of the cathode line for resampling thresholds of 200 particles per cell, 250 particles 
per cell, and the baseline simulation (no resampling). As suggested by the larger elec-
tron temperatures, the VDFs are wider at lower resampling thresholds. This widening 
is limited to the axial and azimuthal axes, with the radial VDF remaining Maxwellian. 

Fig. 5  Effect of resampling on electron temperature profiles, with resampling thresholds of a 200 particles 
per cell, b 250 particles per cell, c 275 particles per cell, and d 300 particles per cell. The light gray and red 
regions have the same meanings as in Fig. 3

Fig. 6  a Ion density ( m−3 ) and b electron temperature (eV) of the baseline simulation at the last timestep 
( t = 20µs)

Fig. 7  Effect of maximum particles per cell (ppc) on a axial, b radial, and c azimuthal electron velocity 
distribution functions
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In contrast, the axial and azimuthal distribution functions are non-Maxwellian, which 
may exacerbate numerical heating during resampling.

Given these results, it seems that resampling should be used with caution, at least in 
low-temperature plasmas. While resampling can improve performance significantly, 
it risks distorting the higher moments of the particles’ velocity distribution function 
and altering the simulation in an unphysical manner if care is not taken to preserve 
these moments [29]. As such, the resampling threshold, if one is used, should be set 
to a value close to the expected steady-state particle count, so that resampling only 
occurs during transient events, provided that the steady-state solution is not depend-
ent on these transients and that the resolution of these transients is not desired.

Sorting interval and multigrid precision

The results in Table 5 demonstrate that more frequent particle sorting typically results 
in better simulation performance, with a maximum speed-up of one hour and diminish-
ing returns for sorting intervals below 100 iterations. We also found that that decreasing 
the tolerance of the field solver dramatically improved performance. This performance 
improvement was very coarse-grained—in the baseline case, the iterative algorithm used 
to solve the fields only needed to perform three iterations, on average, to converge on the 
requested relative tolerance of 10−5 . Increasing the tolerance to 10−3 decreased the num-
ber of iterations needed to two, and decreasing it to 10−6 increased the iteration count 
to four. Further increasing the tolerance to 10−2 had no effect, as two iterations were still 
required to converge to within this tolerance. We found that simulations performed at 
these higher tolerances were not qualitative or quantitatively different than those per-
formed at lower tolerances and lay within the noise threshold of the PIC method and the 
run-to-run variance.

Semi‑implicit solver

Performance

As shown in Table 5, the grid coarsening enabled by the use of the semi-implicit Poisson 
solver resulted in dramatic reductions in wall time. The 2x case completed in only 11.5 
hours, a 3.5x speedup over the baseline case. The 4x and 8x cases finished even faster, at 
4 and 2 hours, respectively. In Fig. 8, we show the results from the 2x, 4x, and 8x semi-
implicit cases.

Fig. 8  a Axial electric field, b plasma density and c electron temperature for the baseline explicit case and 
the three semi-implicit cases
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We find that the semi-implicit solver maintains good agreement with the benchmark 
up to 4x coarsening, particularly for the electron temperature. As the grid coarsens, the 
electric field profile broadens and the peak field decreases, from 50 kV in the baseline 
case to 43 kV in the 8x case. The peak plasma density also declines, from 3.6× 1017 m−3 
in the baseline case to 3× 1017 m−3 in the 8x case. The electron temperature profile 
changes little between the baseline case and the 2x and 4x semi-implicit simulations, but 
the peak temperature decreases sharply in the 8x case, going from 52 eV to 44 eV.

In Fig. 9, we quantify the deviation in plasma density, electric field, and electron tem-
perature from the benchmark for the chosen cases, as well as as a function of semi-
implicit factor, timestep, and particle count. We calculate the deviation in a quantity y 
from the benchmark value yb as

where y has been interpolated to the same coordinates as yb and values beyond the cath-
ode line at x = 2.4 cm have been ignored.

In all cases, the deviation is less than 25% for the 4x and 8x cases and 10% in the 2x 
case, and tends to increases as the grid coarsens. Increasing the semi-implicit factor (C 

(10)Deviation =

√

∑

(y − yb)2
∑

y2b
,

Fig. 9  Average deviation from the benchmark in plasma density, electric field, and electron temperature 
for different grid spacings, as a function of a-c timestep, d-f semi-implicit factor, and g-i particle count. The 
nominal 2x, 4x, and 8x cases from Table 1 are indicated with labels and as hatched bars
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in Eq. 9) yields better agreement with the benchmark electron temperature at the cost of 
worse agreement with the plasma density and electric field. We attribute this to a reduc-
tion in numerical heating. Increasing timestep has little effect on the plasma density and 
electric field, but reduces the discrepancy in electron temperature by up to 50% in the 8x 
case. In the 2x case, increasing the particle count does appear to yield improved agree-
ment, especially in electron temperature. This likely indicates a reduction in numerical 
heating. However, this trend is much less clear in the 4x and 8x cases.

In Fig. 10, we show how the axial ion velocity distribution function (IVDF) changes as 
the grid and time resolution are coarsened. We observe excellent agreement in the most 
probable velocity across all cases, with the ion acceleration profile becoming modestly 
more shallow as the grid coarsens. This makes sense given the reduction in peak electric 
field for the coarser cases observed in Fig. 8. Additionally, there is some disagreement 
in the near-anode region, particularly in the 8x case (Fig. 10d), as the grid spacing has 
grown larger than the anode sheath width in the baseline case. This leads to an expan-
sion of the anode sheath, but does not affect the velocity outside of this region.

Plasma instabilities

To investigate the effect of the semi-implicit method and grid coarsening on the charac-
ter of the global plasma instabilities, we show in Fig. 11 the 2D azimuthal electric field 
at the last timestep for each semi-implicit case, as well as for the explicit baseline solu-
tion. Consistent with the benchmark results in Ref. [15], we find that an instability devel-
ops early in the simulation and develops into a azimuthally-propagating wave with two 
modes—a short-wavelength mode near the anode and a long-wavelength mode in the 
right half of the domain. These basic characteristics of the explicit simulation persist in 
the semi-implicit simulations, but the wavelength of the short-wavelength mode gradu-
ally increases as the grid coarsens. We illustrate the changing dominant wavelength and 

Fig. 10  Axial ion velocity distribution function for the explicit and semi-implicit cases. In each figure, we 
include for comparison the most probable velocity of the explicit case as a white dashed line
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frequency of these instabilities as one moves downstream in Fig. 12, and show the azi-
muthal wavelength spectra for each of the two modes in Fig. 13. The dominant frequen-
cies and wavelengths agree with the benchmark for the 1x and 2x cases. However, the 

Fig. 11  Evolution of the azimuthal electric field as the grid is coarsened using the semi-implicit scheme. The 
vertical lines indicate x = 0.3 cm and x = 1.75 cm

Fig. 12  Evolution of the a dominant azimuthal wavelength and b dominant azimuthal frequency as a 
function of axial location

Fig. 13  Spectra of the azimuthal electric field wavelength at a x = 0.3 cm and b x = 1.75 cm. The dominant 
wavelengths from the 2019 benchmark are indicated in gray
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distinction between the upstream and downstream modes begins to diminish for the 4x 
case. In the 8x case, the discrepancy between these modes disappears entirely, and the 
same wavelength is dominant across the whole domain. In addition, the maximum azi-
muthal electric field declines by 40% in the 4x case, and 70% in the 8x case.

Given these changes in the character of the global instabilities, we were surprised that 
the time-averaged axial electric field remains consistent across all cases, with only a 
gradual reduction in peak field strength as the grid is coarsened. As the establishment 
and localization of this strongly-peaked electric field is one of the major consequences of 
anomalous electron transport in Hall thrusters, our results suggest that the magnitude of 
the transport may be relatively insensitive to some of the spectral characteristics of the 
azimuthal instability.

Convergence and numerical heating

In Fig. 14, we show the electron current emitted by the cathode and averaged electron 
temperature for each case. As in Ref. [15, 30], we use the former as a measure of both 
numerical convergence and anomalous transport level. The latter gives an indication of 
the degree of numerical heating/cooling, which must be monitored when using implicit 
PIC schemes. We find that in the 1x, 2x, and 4x cases, the electron current agrees well 
with the benchmark, but falls by a factor of 3 in the 8x case. This likely indicates a reduc-
tion in electron mobility, which makes sense given the reduction in azimuthal electric 
field amplitude seen in this case in Fig. 11.

Examining Fig. 14b, we observe a small increase in average electron temperature over 
the benchmark value of 2, 2.5, and 1 eV in the 2x, 4x, and 8x cases, respectively. This 
amount of numerical heating, while non-negligible, is small and may be difficult to dis-
tinguish from other sources of uncertainty in larger simulations with more self-consist-
ent physics. As shown in Fig. 9i, the amount of numerical heating in the 2x and 4x cases 
may be reduced further by increasing the particle count.

Taken together, these results show that Barnes’ semi-implicit method can significantly 
reduce the computational cost of Hall thruster simulations while preserving the bulk 

Fig. 14  a Cathode current as a fraction of the extracted ion current JM for the 1x, 2x, 4x, and 8x cases. b The 
averaged electron temperature in the domain for the same cases. For both plots, the range of values in the 
2019 benchmark is indicated in gray
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plasma behavior. In particular, the 2x case yields averaged deviations of less or equal to 
than 10% across plasma density, electron temperature, and electric field and preserves 
the character of the azimuthal plasma instabilities. Despite the greater speedups seen in 
the 4x and 8x cases, their increased deviations from the benchmark of up to 25% and the 
observed modification of the wavelength spectra make them difficult to trust for predic-
tive simulations.

We also believe that the potential speedups may be greater than those observed here. 
In the 2x case, the GPU needs to do eight times less work than in the explicit case, as it 
needs a quarter of the cells and half as many timesteps. Despite this, we only observed a 
speedup of 3.5 times over the baseline case. This is likely because the benchmark simula-
tion is relatively small for this GPU, and some amount of its computational cost is purely 
overhead. This overhead remains roughly constant and begins to dominate as the work-
load is reduced. For larger simulations, the proportion of work dedicated to this over-
head decreases, and the potential speedups seen from using the semi-implicit method 
increase. Three-dimensional simulations should see even larger speedups, as the grid 
can be coarsened along an additional dimension.

Scaling analysis of electrostatic solver

One good measure of the how well a parallel code scales to multiple processors is the 
strong scaling efficiency, given by

where N is the number of processors and t(N) is the execution (wall) time when running 
the code with N processors. The factor t(1)/t(N) gives the speedup, which for a perfectly 
parallelizable code is equal to N. The strong scaling efficiency thus measures the fraction 
of the ideal speedup that we observe in practice.

In Fig. 15a, we show how the strong scaling efficiency computed at each workload var-
ies as a function of GPU count. For all workloads up to 213 , we measured the strong scal-
ing efficiency with respect to the single-GPU case. For the final case (workload 214 ) we 

(11)Strong scaling eff.(N ) =
t(1)

Nt(N )
,

Fig. 15  a Strong scaling efficiency for uniform plasma simulations. Markers indicate the workload at which 
speedup is equal to one. Dashed lines represent strong scaling efficiency measured with respect to the 
2-GPU case, i.e. 2t(2)/Nt(N). b Fraction of wall time spent in inter-process communication for workload 213
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instead measured it with respect to the 2-GPU case, as the problem could no longer fit in 
the memory of a single GPU. We find that while speedups in the electrostatic solver can 
be obtained using multiple H100 GPUs, this speedup only becomes relevant for large 
workloads. For instance, when running the largest uniform plasma simulation that can 
fit in memory on a single H100 (workload 213 ), the speedup is only 1.75. The culprit for 
this less-than-ideal scaling behavior is the increased overhead of MPI communication as 
the number of GPUs increases.

In Fig. 15b, we plot the fraction of time spent on MPI communication for each GPU 
count for workload 213 . We find that the MPI overhead increases with the number of 
GPUs, up to 95% in the 32 GPU case. The reason for this increased overhead lies with 
Poisson’s equation. Solving Poisson’s equation requires communication across MPI 
ranks many times per iteration as smoothing is applied at each level of the multigrid 
algorithm. In contrast, updating the electromagnetic fields can be done largely locally 
using finite differencing and minimal inter-process communication.

There are a few caveats to these results, however. Scaling studies of this kind are sen-
sitive to the configuration of the systems used to run them, and it is possible that our 
results are particular to the specific cluster we used. Additionally, while we found that 
the electrostatic solver in particular scaled sub-ideally, we were able to verify that the 
particle parts of the code and the electromagnetic solver exhibited excellent scaling, as 
previously reported in Ref. [18]. Given that, it might be possible that for certain very 
large problems, the electromagnetic solver could outperform the electrostatic solver for 
Hall thruster simulations, even though the EM solver must take significantly smaller 
timesteps than the ES solver.

Finally, we note that while WarpX’s field solver may not exhibit perfect scaling, other 
Poisson solvers for electrostatic PIC applications may be able to perform better. In 
particular, the GPU ion thruster plume code CHAOS [13] uses a conjugate-gradient 
method to solve Poisson’s equation. This solver, when implemented with careful regard 
for the layout of the problem in GPU memory and the amount of MPI communication 
required, is reported to yield good strong scaling efficiency up to 128 GPUs.

Role of GPU hardware

The performance on the older Nvidia V100 (3.81 days compared to 1.81 days on the 
H100 GPU) is still significantly faster than all but two of the codes in the 2019 bench-
mark. This indicates that at least some of the improvements seen in the explicit simu-
lations this work are due to WarpX’s code architecture and the inherent advantages of 
a GPU for PIC simulations. However, the simulation on the H100 was nearly twice as 
fast with no change in algorithm or configuration. This result highlights the important 
role of increasingly powerful GPU hardware in accelerating kinetic simulations of low-
temperature plasma devices like Hall thrusters.

Despite WarpX’s good benchmark performance across hardware generations, one 
major gap in its abilities is lack of support for the reduced-precision and tensor compu-
tations needed to fully exploit newer AI-focused GPUs like the H100 [26]. In particular, 
while the H100 PCI-e GPU has a capacity of 34 and 67 teraFLOPS (1012 floating point 
operations per second), respectively, for non-tensor double- and single-precision float-
ing point operations, respectively, it can support up to 756 teraFLOPS for TF32 tensor 
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operations and 1513 FLOPS for FP16 operations. New algorithms for PIC that can effec-
tively make use of these reduced-precision operations may lead to even more dra-
matic performance improvements. As the demand for increasingly powerful GPUs for 
machine learning and artificial intelligence applications increases, it is likely that even 
greater speed-ups in particle-in-cell simulations of Hall thrusters will be made possible, 
provided the codes can make efficient use of the new hardware.

Kinetic simulations in an engineering context

Combining increases in hardware capabilities with new algorithms for reducing noise 
and improving the parallel efficiency of PIC simulations may bring kinetic Hall thruster 
simulations down in cost enough to be useful in an engineering contexts. The main chal-
lenge remaining is the long simulation times needed to adequately resolve the dynamics 
of real thrusters. Including real ionization, rather than a fixed source term, introduces 
breathing mode oscillations which have frequencies on the order of 10 kHz [1]. As such, 
simulations that capture these oscillations must run for timescales of ∼ 1 ms, about 50 
times longer than the simulation durations in this work. Additionally, recent 3-D parti-
cle-in-cell simulations of Hall thrusters have demonstrated that many important aspects 
of the instabilities governing anomalous transport are not well-resolved by 2-D axial azi-
muthal simulations [8]. Even accounting for significant improvements in hardware, these 
constraints mean kinetic, whole-device Hall thruster simulations may still require wall 
times measuring in the months. However, when accounting for the time needed to build 
a thruster, and collect the data necessary to calibrate current non-predictive engineering 
models of Hall thrusters [3], it is still possible that kinetic simulations may soon become 
usable in engineering applications.

Conclusion
In this work, we have demonstrated the applicability of the open source particle-in-cell 
code WarpX for kinetic Hall thruster simulations. To do this, we simulated the well-
known 2-D axial azimuthal benchmark of Charoy et al., and found that the results we 
obtained agreed satisfactorily with those previously published. Next, we investigated the 
impact of a variety of numerical parameters on the simulation performance and physics. 
We found that while resampling particles in regions of high densities has the potential to 
significantly speed up simulations, the method employed here appears to produce un-
physical particle heating when the resampling threshold is too low. Therefore, this tech-
nique must be applied with care. In comparison to the effect of resampling, the precision 
of the multigrid Poisson solver had little impact on the physical output of the simula-
tion. The performance implications of the particle sorting interval were relatively minor, 
with slightly better performance seen at shorter sorting intervals. However, reducing the 
Poisson solver relative tolerance from 10−5 to 10−3 accelerated the simulation by about 
13%, or 5 hours, with no visible impact on solution quality. We then demonstrated the 
impact of recent improvements in GPU hardware by performing one simulation on an 
older Nvidia V100 GPU. This simulation took over twice as long to complete as our 
baseline simulation, which used a newer Nvidia H100.

We then assessed a semi-implicit formulation of Poisson’s equation recently imple-
mented into WarpX. Our simulations using this scheme used far fewer grid cells than 
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our baseline case and longer timesteps. The results of these simulations showed good 
agreement with the benchmark when using cell sizes and timesteps up to four times 
longer than the baseline case. In this case, the simulation completed in just four hours. 
Simulations performed at even coarser grid resolutions were stable and showed qualita-
tive, albeit worsened, agreement with the benchmark. These results show that this solver 
is capable of producing dramatic reductions in computational cost and time with only 
minor losses in fidelity.

Finally, we assessed the scalability of the WarpX’s electrostatic solver across multi-
ple GPUs on a uniform plasma test case. We found that increasing the GPU count does 
yield speedups for problems that saturate a single GPU, but the parallel efficiency was 
less than desired. We attribute this inefficiency to the large amount of MPI data-trans-
fer incurred by the multigrid Poisson solver, and found that the other parts of the code 
scaled well to arbitrary computational resources.

As WarpX is an open source code, this work provides a common baseline for research-
ers to compare to and expand upon. Our results highlight the potential of advancements 
in GPU hardware for accelerating kinetic simulations of Hall thrusters and similar low-
temperature plasma devices and suggests that such simulations could soon be viable for 
use in certain engineering contexts.
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