
Open Access

© The Author(s) 2025. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits
use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third
party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the mate-
rial. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://
creativecommons.org/licenses/by/4.0/.

RESEARCH

Marks and Gorodetsky ﻿
Journal of Electric Propulsion (2025) 4:34
https://doi.org/10.1007/s44205-025-00133-1

Journal of Electric Propulsion

GPU‑accelerated kinetic Hall thruster
simulations in WarpX
Thomas A. Marks1* and Alex A. Gorodetsky1 

Abstract 

Two-dimensional (axial-azimuthal) simulations of a Hall thruster are performed using
the open-source particle-in-cell code WarpX. The simulation conditions are cho-
sen to match those of the axial-azimuthal benchmark first reported by Charoy et al.
in 2019. A range of numerical and solver parameters is investigated in order to find
those which yield the best performance. It is found that WarpX completes the bench-
mark case in 3.8 days on an Nvidia V100 GPU, and in as low as 1.5 days on a more
recent Nvidia H100 GPU. Of the numerical parameters investigated, it is determined
that the field-solve tolerance and particle resampling thresholds have the largest
effect on the simulation wall time and that particle resampling may artificially widen
electron velocity distribution functions, leading to unphysical heating. A semi-implicit
scheme for the electrostatic field solve is tested and is found to produce results consist-
ent to within 10% of the benchmark in less than twelve hours. The scaling properties
of the electrostatic solver to multiple GPUs are also assessed on a uniform plasma
test problem. The results of this work are discussed in the context of advancements
in GPU hardware and the suitability of kinetic Hall thruster simulations for engineering
applications.

Keywords:  Hall thruster, Kinetic, Simulation, PIC, GPU

Introduction
Kinetic whole-device simulations of Hall thruster discharges have long been too expen-
sive to use in engineering contexts. While capable of resolving the physics driving and
growth and saturation of microinstabilities that lead to so-called “anomalous” elec-
tron transport [1], such simulations require grid spacings on the scale of the electron
Debye length ( ∼ 10−6m ) and timesteps on the order of the electron plasma frequency
( ∼ 10−12s ). At the same time the simulation must run long enough to capture the long
length- and time-scales over which the Hall thruster plasma achieves a quasi-steady
state (around 10−1 m and 10−3 s, respectively) to be useful for simulations of real devices.
These stringent requirements and the long run-times that result have led to kinetic sim-
ulations being considered inadequate for engineering purposes.

As a result, the community has adopted other approaches for incorporating tur-
bulent effects into Hall thruster simulations. Most commonly, researchers model
anomalous electron transport using Bohm diffusion modified with spatially-varying

*Correspondence:
marksta@umich.edu

1 Department of Aerospace
Engineering, University
of Michigan, Ann Arbor,
Michigan, USA

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1007/s44205-025-00133-1&domain=pdf

Page 2 of 25Marks and Gorodetsky ﻿Journal of Electric Propulsion (2025) 4:34

scaling coefficients. This approach has been successful at producing converged simu-
lations that match experimental data [2], but the scaling coefficients are not general-
izable across thrusters or operating conditions and must be tuned for each case [3].
To address this lack of generality, many authors have derived first-principles [4, 5]
or data-driven [6] closure models of how the instability-induced electron transport
scale with fluid plasma properties such as temperature, density, and velocity. To date,
though, no such model has proved capable enough for general engineering and design
applications [7].

In light of the shortcomings of these lower-fidelity approaches, and with recent
advancements in computing hardware, there has been renewed interest in simulating
Hall thrusters kinetically [8]. In particular, the advent of large-scale multi-GPU com-
puting has recently produced unprecedented speed-ups in kinetic simulations of other
plasma devices, such as laser plasmas [9], tokamaks [10] and plasma wakefield accelera-
tors [11]. GPUs have also been successfully applied to low-temperature plasma applica-
tions [12], including the low-density plumes of electric propulsion systems [13]. These
successes suggest that GPUs may accelerate kinetic Hall thruster simulations.

In this work, we apply WarpX, an open-source particle-in-cell (PIC) code, to the
problem of Hall thruster simulation. WarpX was designed to scale to the largest
supercomputing clusters [14], can run on CPUs and GPUs, and is highly extensible.
As such, it serves as a good starting point for developing Hall thruster codes with sim-
ilar scalability. We use WarpX to simulate the 2-D axial-azimuthal E × B benchmark of
Charoy et al. [15], which models the plasma instabilities thought to drive anomalous
electron transport in a simplified Hall thruster geometry. We find the following:

1.	 Using an explicit scheme, WarpX outperforms previously-published benchmark
results on a single GPU, with completion times as low as 38 hours depending on the
numerical parameters.

2.	 The results of the benchmark are insensitive to the precision of the Poisson solver.
3.	 Adopting a semi-implicit scheme for solving Poisson’s equation reduces the compu-

tational cost of the benchmark simulation. We are able to complete the benchmark
simulation in fewer than twelve hours, and expect that larger simulations would ben-
efit even more strongly from the use of this scheme.

4.	 While WarpX’s particle routines scale well as problems grow to multiple GPUs, the
field solver lags behind. As demonstrated on a uniform plasma test problem, at larger
problem sizes (32 GPUs), over 90% of the computational cost comes from MPI com-
munication.

We note that paper is expanded and revised from a paper presented at the 2024 Inter-
national Electric Propulsion Conference [16]. In that paper, we investigated the effect
of numerical parameters beyond those investigated in the present work on the accu-
racy and computational cost of the benchmark simulation. These included the parti-
cle shape function and the frequency and presence of electron-ion collision checks. In
that work, however, we did not investigate the scaling of the code to multiple GPUs,
nor did we investigate the semi-implicit scheme mentioned above. We refer interested
readers to that paper for more details.

Page 3 of 25Marks and Gorodetsky ﻿Journal of Electric Propulsion (2025) 4:34 	

This paper is organized as follows. In Methods, we describe the conditions of the
benchmark, the capabilities of WarpX, and our modifications to WarpX to support Hall
thruster simulations. We provide details of the numerical parameters and algorithms
investigated in our simulations, describe our application of a semi-implicit numerical
scheme, and set up an electrostatic uniform plasma scaling study. In Results, we then
present the results of our studies. Finally, in the Conclusion, we conclude with some
thoughts on the implications for our work on the use of particle-in-cell simulations in
the engineering and design of Hall thrusters.

Methods
Benchmark simulation

In this work, we simulate Case 2a of the LANDMARK low-temperature benchmark-
ing effort [17]. This case is designed to capture the main kinetic effects governing Hall
thruster discharges—namely the onset and growth of drift-driven turbulence as well as
plasma aceleration in the axial direction. In particular, we compare our efforts to results
of several codes from throughout the community, reported by T. Charoy et al in 2019
[15]. In this section, we describe the benchmark conditions; the reader is referred to Ref.
[15] for a more detailed description.

The benchmark is a two-dimensional axial-azimuthal particle-in cell simulation of a
simplified Hall thruster geometry. We show the simulation domain in Fig. 1, where the
axial (x) and azimuthal (y) dimensions have lengths of Lx = 2.5 cm and Ly = 1.28 cm ,
respectively. Our simulations assume the azimuthal dimension is periodic and do not
consider curvature effects. We apply an external radial magnetic field Bz(x) throughout
the domain, with the maximum field strength of 10 mT occuring at x = 0.75 cm.

We employ a grid resolution of 512 cells in the axial direction ( �x = 4.88× 10−5 m )
in the axial direction and 256 cells in the azimuthal direction ( �y = 5× 10−5 m ), with
a timestep of 5× 10−12 s . These conditions are sufficient to resolve both the electron
Debye length as well as the electron plasma frequency, which are critical to the stability
and accuracy of the explicit particle-in-cell method.

Fig. 1  The 2-D axial-azimuthal benchmark simulation domain

Page 4 of 25Marks and Gorodetsky ﻿Journal of Electric Propulsion (2025) 4:34

The benchmark does not model neutral atoms; we instead inject electron-ion pairs
according to a ionization rate profile bounded by x = 0.25 cm and x = 1 cm . This
“injection region” is depicted in darker blue in Fig. 1. Injecting particles in this man-
ner allows simulations to avoid resolving both ionization oscillations and start-up
transients and achieve steady state in tens of microseconds. The temperatures of the
newly-injected electrons and ions are 10 and 0.5 eV, respectively. Between the anode
at x = 0 cm and a “virtual cathode” at x = 2.4 cm , we apply a DC voltage of 200 V.
To maintain current continuity, any net current that crosses the anode plane is re-
injected as electron current at the cathode.

The simulation begins as a plasma with density ne = 5× 1016 m−3 , and electron and
ion temperatures of 10 and 0.5 eV, respectively. We run the simulation for 20µ s and
report plasma properties averaged over the last four microseconds of the run. The
original benchmark considers three cases, differentiated by the weight of the compu-
tational macroparticles, and therefore by the number of particles in the simulation at
startup. Case 1 starts with 150 particles per cell, Case 2 with 75, and Case 3 has 300.
In this work, we simulate all three of these cases, but treat Case 2 as the baseline case
for our subsequent studies. Table 1 contains a summary of the benchmark simulation
parameters.

Table 1  Parameters of the benchmark simulations

Baseline parameters

  Axial domain length, Lx 2.5 cm

  Azimuthal domain length, Ly 1.28 cm

  Axial resolution, Nx 512

  Azimuthal resolution, Ny 256

  Time step, �t 5× 10−12 s

  Discharge voltage, U0 200 V

  Maximum magnetic field, Bmax 10−12 T

  Initial plasma density, n0 5× 1016 m−3

  Initial electron temperature, Te,0 10 eV

  Initial ion temperature, Ti,0 0.5 eV

  Simulation duration, tmax 20× 10−6 s

  Averaging start time, tavg 16× 10−6 s

  Particle precision Single

  Field-solve precision Double

  Field gathering algorithm Energy-conserving

Additional parameters

  Initial particles per cell 75, 150, 300

  Resampling: max particles per cell no resampling, 200, 250, 300

  Particle sort interval 10, 50, 100, 500, 1000

  Multigrid precision 10−2 , 10−3 , 10−5 , 10−6

Semi-implicit solver case C �t Nx Ny

  2x 8 1× 10−11 s 256 128

  4x 16 2× 10−11 s 128 64

  8x 8 4× 10−11 s 64 32

Page 5 of 25Marks and Gorodetsky ﻿Journal of Electric Propulsion (2025) 4:34 	

Extending WarpX for Hall thruster simulations

WarpX is an open-source, time-dependent, relativistic, electrostatic and electro-
magnetic particle-in-cell code developed as part of the United States Department of
Energy’s Exascale Computing Project [14]. While the primary application of WarpX
is simulating high-energy laser-plasma interactions [11], the generality of the code’s
algorithms makes it well-suited for a wide variety of plasma physics. The code is
designed to scale well to very large problem sizes, on both CPU and GPU-dominated
clusters [18].

As with most particle-in-cell codes, WarpX performs four main actions at each
timestep when running an electrostatic simulation. These are:

1.	 Gather fields to particles: The electric and magnetic fields on the grid are interpo-
lated to the particles using a prescribed kernel or “shape function”. In this work, we
use the energy-conserving field gathering scheme originally described by Lewis [19],
which requires fields be stored on a staggered grid. Recent work has demonstrated
that this scheme helps stabilize PIC simulations which under-resolve the Debye
length and reduces the degree of numerical heating [20]. This is an alternative to the
classic momentum-conserving scheme, which co-locates field quantities at nodes
and can lead to aliasing and checkering artifacts in certain situations [21].

2.	 Push particles: The particles move to new positions based on their velocities and
the timestep, and accelerate as a response to the fields gathered in the previous step.
WarpX uses a relativistic extension of the well-known Boris scheme for particle
advancement. This algorithm is second-order in time and energy-conserving, mak-
ing it well-suited for capturing particle orbits around magnetic field lines. WarpX
fuses this step with the field-gathering step above into a single kernel which can be
efficiently executed on GPUs.

3.	 Deposit charge: The charge density ρ and current density j are computed on the
grid from the particle positions, weights, and charges. This interpolation uses a shape
function which matches that used to gather the fields onto the particles.

4.	 Solve fields: Given the charge density on the grid and appropriate boundary condi-
tions, the code solves Poisson’s equation (Eq. 1) to determine the electrostatic poten-
tial U and electric field E :

where ǫ0 is the permittivity of free space, 8.854 × 10−12 F/m . The electric field is then
gathered to the particles and the loop is repeated.

These steps on their own are not sufficient to simulate Hall thruster discharges, which
include both ionization, which adds charged particles to the domain throughout the sim-
ulation and a cathode that injects sufficient electrons to neutralize the ion beam ejected
by the thruster. We must therefore extend WarpX to handle these effects.

Extensions for benchmark simulations

Users running WarpX from its Python interface can specify callback functions which
are triggered at specific points in the computational cycle and can access WarpX’s

(1)−∇2U = ∇ · E = ρ/ǫ0,

https://ecp-warpx.github.io/

Page 6 of 25Marks and Gorodetsky ﻿Journal of Electric Propulsion (2025) 4:34

internal data-structures. There are three parts of the benchmark not included in War-
pX’s core functionality and require new implementations. These are

1.	 The creation of particles in the injection region,
2.	 The injection of particles at the cathode to support current continuity, and
3.	 The zero-volt internal Dirichlet boundary condition at the cathode plane.

Here, we describe each of these components and their implementation into WarpX.
We illustrate how each of these extensions slots into WarpX’s main loop in Fig. 2.

1. Particle injection

This callback creates electron-ion pairs in the injection region according to an ioni-
zation profile at each timestep. Per the benchmark conditions [15], the ionization rate
varies axially as

In the above, S0 = 5.23× 1023 m−3s−1 is the maximum ionization rate, x1 = 0.25 cm ,
x2 = 1 cm , and xm = (x1 + x2)/2 = 0.625 cm . We compute the number of electron-ion
pairs to be injected at each timestep by integrating this function over domain and
multiplying by the timestep, giving

Here, W0 is the base particle weight, or the number of real particles represented by a
single computational macroparticle at simulation start-up, given by

(2)S(x) =
S0 cos π x−xm

x2−x1
x1 ≤ x ≤ x2

0 otherwise.

(3)Ninject,0 =
2S0

πW0
Ly(x2 − x1)�t.

Fig. 2  WarpX’s main computation loop, including the Python callbacks implemented to support the
benchmark simulations

Page 7 of 25Marks and Gorodetsky ﻿Journal of Electric Propulsion (2025) 4:34 	

To implement this in WarpX, we define a callback that executes every timestep in the
particleinjection position. This takes place after the particles have been pushed
to new positions, but before the particles’ charge is deposited onto the grid. We inject
either ⌈Ninject,0⌉ or ⌊Ninject,0⌋ electron-ion pairs with respective probabilities P and 1− P ,
with P equal to the fractional part of Ninject . The axial and azimuthal positions of a
newly-created electron-ion pair can be computed using inverse transform sampling and
are given by [15]

We sample r1 and r2 from uniform distributions on [0,1], the electron and ion veloci-
ties from 3-D Maxwellian distributions corresponding to their respective temperatures,
and set the weights of both species to W0 . We then use WarpX’s add_particles func-
tion to add the newly generated particles to their containers.

2. Cathode injection

To maintain current continuity, the benchmark prescribes that all net charge leaving the
domain through the anode boundary returns as electron current at the cathode [15]. To
implement this in WarpX, we use the code’s BoundaryScrapingDiagnostics fea-
ture. This diagnostic allocates a buffer that logs the number and type of particles that
leave the domain. At each timestep, we record the number of electrons ( �Ne ) and ions
( �Ni ) that have crossed the anode plane. We then inject �Ni −�Ne electrons at the
cathode plane ( x = xe = 2.4 cm ). The new electrons have weight W0 , are distributed
uniformly in the azimuthal dimension, and have velocities drawn from a stationary 3-D
Maxwellian distribution function with temperature 10 eV. We clear the boundary buffer
after each step to avoid an increasing memory footprint over time.

3. Potential adjustment

The benchmark adjusts the potential every timestep to enforce a 200 V drop between the
anode and cathode lines [15]. To make this adjustment, we average the potential com-
puted by WarpX ( U(x, y) ) along the cathode line, giving Ue = (

∫ Ly
0 U(xe, y)dy)/Ly . We

then compute the corrected electrostatic potential φ(x, y):

To implement this procedure in WarpX, we create a callback in the afterEsolve
position, which ensures that the adjustment will be invoked directly after Poisson’s equa-
tion has been solved. We then average the potential interpolated to the cathode line over
the azimuthal direction to get Ue and apply the correction given by Eq. 7. Finally, we dif-
ferentiate Eq. 7 to get a correction to the axial electric field:

(4)W0 =
n0LxLy

Nppc,iniNxNy
.

(5)xi = xm + sin−1(2r1 − 1)
x2 − x1

π
,

(6)yi = r2Ly.

(7)φ(x, y) = U(x, y)−
x

xe
Ue.

Page 8 of 25Marks and Gorodetsky ﻿Journal of Electric Propulsion (2025) 4:34

where Ex = −∂U/∂x is the uncorrected axial electric field.

Simulation outputs

Every 5000 iterations, we output the electric field vector, electrostatic potential, and
charge densities of all species evaluated at the cell centers. We additionally compute the
moments of the each species’ velocity distribution function (VDF) at every cell. In par-
ticular, we calculate the zeroth (density), first (bulk velocity vector), second (pressure
tensor), and contracted third (heat flux vector) moments. We also save the number of
particles and total energy in the system at each timestep. Lastly, we obtain code profiling
information from the TinyProfiler tool built into WarpX, allowing us to investigate the
costs of different parts of the code.

Parameter investigation

In addition to demonstrating the feasibility of Hall thrusters in WarpX, we also inves-
tigate in this work the sensitivity of the simulation results and performance to sev-
eral numerical options. We describe these below along with the range of investigated
parameters.

Particle sorting interval  When running on GPUs, WarpX periodically sorts particles
so that particles that are physically near to one another are also nearby in memory [18].
This improves performance by improving memory locality during the deposition step,
where particle quantities are interpolated to the grid. However, it also introduces a small
performance overhead (about 80% of the cost of a particle push). To find the optimal set-
ting, we vary the sorting interval between 5 and 1000 iterations.

Particle resampling parameters  WarpX supports particle resampling, which is useful
to ensure the simulation is adequately resolved and has an even distribution of com-
putational macro-particles throughout the domain. This is particularly useful if the
simulation features continuous particle injection, as ours does, which could lead to an
unnecessary build-up of particles in the injection region and a corresponding reduction
in simulation speed. In this work, we use the leveling-thinning algorithm developed by
Muraviev et al. [22], which is WarpX’s default resampling option. This algorithm down-
samples (merges) particles while trying to maintain an accurate representation of their
velocity distribution function. This resampling is performed per-species and is con-
trolled by three parameters:

1.	 resampling_algorithm_target_ratio, which corresponds to the ratio of
the number of particles before a resampling step to the number after a resampling
step.

2.	 resampling_min_ppc, which is the threshold number of particles per cell below
which a cell will not be resampled.

(8)Ex = −
∂φ

∂x
= −

∂

∂x
U(x, y)+

Ue

xe
= Ex +

Ue

xe
,

Page 9 of 25Marks and Gorodetsky ﻿Journal of Electric Propulsion (2025) 4:34 	

3.	 resampling_trigger_max_avg_ppc, which defines the maximum number of
particles per cell, averaged over the whole domain, above which resampling is trig-
gered.

In our simulations, we set the first parameter to the WarpX default of 1.5, the second to
75 particles per cell, and vary the maximum particles per cell between 200 and 300.

Field solve tolerance  For electrostatic simulations, WarpX uses a multigrid method to
solve Poisson’s equation to obtain the electric field and potential. Starting from the fields
solved at the previous timestep, this method iteratively reduces the error in the solution
of Poisson’s equation until it reaches a user-specified relative tolerance (hereafter, “mul-
tigrid precision”). We test tolerances between 10−2 and 10−6 in this paper.

Semi‑implicit scheme  Finally, we evaluate in this work the usefulness of a semi-implicit
algorithm on accelerating kinetic Hall thruster simulations. This algorithm, developed
by D. Barnes (see Appendix of Ref. [23]) and recently implemented in WarpX by Groe-
newald et al. [24], replaces the normal Poisson’s equation (Eq. 1) for the potential with

where C > 1 is an adjustable constant and ωpe =
√

e2ne/meǫ0 is the plasma frequency.
This modified Poisson’s equation acts stabilize the electron plasma mode by artificially
raising the electron plasma frequency. In combination with the energy-conserving gath-
ering scheme, this choice allows larger cell sizes and timesteps than are typical in explicit
PIC schemes while leaving modes uncoupled to the electron plasma mode unaffected. A
recent study found that this scheme was able to accelerate simulations of an electrostatic
Penning discharge by two orders of magnitude [24], which shows promise for its use in
Hall thruster simulations. In this paper, we evaluate the semi-implicit scheme at three
grid resolutions: 2x ( �t = 1× 10−11 s , Nx = 256 , Ny = 128 ), 4x ( �t = 2× 10−11 s ,
Nx = 128 , Ny = 64 ) and 8x ( �t = 4 × 10−11 s , Nx = 64 , Ny = 32 , while leaving all other
parameters unchanged.

Barnes’ algorithm resembles the well-known Direct-Implicit (DI) scheme [25], which
is known to suffer from numerical heating at large timesteps [20]. To address this, we
set C to 8 for the 2x and 8x cases and 16 for the 4x and cases, as these values yielded
the smallest deviation in the time-averaged electron temperature from the baseline
simulation.

Summary of simulation parameters

Table 1 summarizes the parameters employed in this work. The top half of the table
contains the benchmark parameters common to all simulations, discussed in the sec-
tion describing the Benchmark simulation, while the bottom half shows the ranges of
the variable numerical parameters discussed above. The parameters of the baseline case
are underlined. For the semi-implicit simulations, we use an initial particle count of 75

(9)∇ ·

(

1+
1

4
C�t2ω2

pe

)

∇φ = −ene/ǫ0,

Page 10 of 25Marks and Gorodetsky ﻿Journal of Electric Propulsion (2025) 4:34

particles per cell, a multigrid precision of 10−3 , a sorting interval of 500 iterations, and
no resampling.

We perform all but one of our simulations on a single Nvidia H100 GPU, with 80
GB of onboard memory [26]. This is a new GPU, launched in 2023 designed primar-
ily for machine learning workloads but with large general-purpose compute capability.
To determine how much of WarpX’s performance compared to the benchmark depends
on the code architecture versus advancements in hardware in the intervening five years,
we run a single simulation using the baseline case parameters on an Nvidia V100. The
V100 GPU was released in 2017 and is thus contemporaneous with the computational
hardware used in the 2019 benchmark. We employ single-precision arithmetic for the
particles and double-precision arithmetic for the field solve. As GPUs typically have sig-
nificantly more single-precision processing power than double-precision, mixing pre-
cisions in this way accelerates the simulation while maintaining an acceptable level of
accuracy.

Scaling

Finally, we analyze the scaling of WarpX’s electrostatic (ES) solver to multiple GPUs on
both a single node and across several nodes. To that end, we perform 3-D simulations
of a uniform plasma in a periodic box. This selection has several advantages over the
Hall thruster benchmark simulation. First, these simulations converge quickly (typi-
cally a few minutes) as opposed to the tens of hours required for the 2-D axial-azimuthal
simulations. Second, they have very simple physics, allowing us to focus entirely on the
scalability of WarpX’s numerics. Finally, they do not rely on WarpX’s python exten-
sion interface. The callbacks we have implemented, while performant at the scale of the
benchmark, may not scale well to very large problems.

As the scalability of the particle push, charge deposition, and field gathering, as well
as that of the electromagnetic (EM) solver have all been assessed in the past [18], we
focus here on the scaling of the grid-based electrostatic field solver. In Table 2, we show
the parameters used for our scaling tests. tarting with a workload of 32 cells in each
dimension (workload 1), we gradually increase the grid resolution, incrementally dou-
bling the resolution in each dimension, until the computation cannot fit in memory.

Table 2  Parameters for uniform plasma scaling tests

Nx Ny Nz Workload

Minimum workload 32 32 32 20(1)

Maximum workload 1024 1024 512 214(16384)

Particles per cell 1

Minimum GPUs 1

Maximum GPUs 32

GPUs per node 8

Domain size: 40× 10−6 m

Plasma density 1× 1025 m−3

Electron thermal velocity 0.01 c

Timestep size 10−14 s

Maximum iterations 250

Page 11 of 25Marks and Gorodetsky ﻿Journal of Electric Propulsion (2025) 4:34 	

The cluster we used has eight GPUs per node, so runs with 16 and 32 GPUs used two
and three nodes, respectively. For a single GPU, workload 213 is the largest able to run,
with (Nx,Ny,Nz) = (1024, 512, 512) , while workload 214 can run on two, four, and eight
GPUs. For each workload and GPU count, we record the wall time after the simulation
completed, as measured by WarpX. We assign one MPI rank per GPU and incrementally
decompose the domain as described in Table 3.

Results
Benchmark simulations

In Table 5, we summarize the performance, in terms of wall time, of each of our simula-
tions. This table includes only the results obtained using the explicit solver on the full-
size grids. We first focus on the the results of our baseline simulation, highlighted in
grey in this table, as well as the other cases from the 2019 benchmark. For the baseline
simulation, we initialized the domain with 75 particles per cell, performed no resam-
pling, sorted the particles every 500 iterations, used linear particle shape functions for
the particles, and set the multigrid precision to 10−5 . In Fig. 3, we compare the results
of this simulation to those of Case 2 of the 2019 benchmark. As that benchmark con-
tained a number of different codes with slightly varying results, we show in light red the
range of the benchmark results, rather than the result of any one code. It is apparent that
our results lie well within the acceptable range of the benchmark, and our extensions to
WarpX have been successful.

Table 3  MPI domain decomposition and GPU allocation strategy for scaling tests

Number of GPUs

1 2 4 8 16 32

Nodes 1 1 1 1 2 4

MPI ranks in x-direction 1 2 2 2 4 4

MPI ranks in y-direction 1 1 2 2 2 4

MPI ranks in z-direction 1 1 1 2 2 4

Fig. 3  a Electric field, b ion number density, and c electron temperature for the baseline simulation. The
range of benchmark results from Case 2 of Charoy et al, 2019 [15] is indicated in pale red

Page 12 of 25Marks and Gorodetsky ﻿Journal of Electric Propulsion (2025) 4:34

WarpX completed the full 20 µ s simulation using the explicit solver in 1.81 days on
the H100 GPU and 3.81 days on the V100 GPU. In comparison, typical wall times for
this case ranged from 3 to 11 days in the 2019 benchmark, with the best result achieved
by a code developed by the Princeton Plasma Physics Laboratory (PPPL, 2.5 days on 112
CPUs). The only GPU-based code that participated in the 2019 effort required 9 days to
finish Case 2 on an Nvidia A100 GPU, a more powerful contemporary of the V100 [27,
28]. However, this code used an implicit particle pusher with a much larger computa-
tional overhead than the explicit pushing scheme employed by our WarpX simulations.
As such, it is not directly comparable to our results.

We also report in Table 4 a summary of the time spent in by WarpX in different parts
of the PIC cycle (see Fig. 2) in the first two cases. Cases 1 and 3—which have two and
four times as many particles, respectively, as Case 2—took 58% and 179% longer than
Case 2 to complete. In the baseline case, the computational time was split roughly evenly
between particle-based and grid-based parts of the code. As the particle count increased
in Cases 1 and 3 and grid size remained constant, the fraction of time WarpX spent
in the particle routines increased by over 50%. We illustrate these data graphically in
Fig. 4a. In Fig. 4b, we show a roofline plot of the performance on an H100 of the three
main kernels of the PIC loop on the baseline case. We find that the gather-and-push and
charge deposition kernels are memory-bound, limited primarily by the bandwidth of the
DRAM and L2 caches. In contrast, the field solver is operating well-below the memory
streaming limit. This may be due to the relatively small problem size.

In Table 5, we report the wall-clock time taken for each of the simulations in our
numerical parameter investigation. We also report the time taken by an optimized
explicit simulation, with numerical parameters chosen from the best results of each of
our investigations. For this simulation we employed resampling at a 300 particle-per-cell
resampling threshold, a sorting interval of 100 iterations, and a multigrid precision of
10−3.

Effect of resampling

As expected, reducing the maximum allowable number of particles per cell improved
performance, with a reduction in wall time of up to 25% at a threshold of 200 particles
per cell. In contrast, a resampling threshold of 300 particles per cell had minimal effect
on runtime (a decrease of about 1 hour), as the steady state particle count of the baseline
simulation was 290 particles per cell of each species. Resampling was thus only triggered
during the startup transient.

Despite the performance improvements made possible by resampling, we found that
thresholds lower than the steady-state particle count adversely affected the accuracy of
the simulation. In particular, while the time-averaged density and electric field profiles
were very similar across all resampling thresholds, the electron temperature at the right
boundary depended on the particular threshold chosen.

In Fig. 5, we show how the electron temperature changed as the maximum aver-
age particles per cell increased from 200 to 300 particles per cell. While the solution
remains in good agreement with the benchmark result upstream of the location of
maximum magnetic field, it deviates in the downstream half of the domain. At the
right boundary, the electron temperature at a maximum resampling threshold of 200

Page 13 of 25Marks and Gorodetsky ﻿Journal of Electric Propulsion (2025) 4:34 	

Ta
bl

e 
4 

Pe
rf

or
m

an
ce

 fo
r t

he
 b

as
el

in
e

si
m

ul
at

io
n

us
in

g
th

e
ex

pl
ic

it
so

lv
er

 (C
as

e
2,

 h
ig

hl
ig

ht
ed

 in
 g

re
y)

 a
s

w
el

l a
s

Ca
se

s
1

an
d

3,
 o

n
bo

th
 H

10
0

an
d

V1
00

 G
PU

s

Th
e

pe
rf

or
m

an
ce

 o
f t

he
 im

pl
ic

it
so

lv
er

 is
 d

oc
um

en
te

d
la

te
r,

in
 T

ab
le

 5

Page 14 of 25Marks and Gorodetsky ﻿Journal of Electric Propulsion (2025) 4:34

particles per cell is 7 eV higher than that of the baseline case. To investigate why this
might occur, we plot in Fig. 6 the ion density and electron temperature at the last
timestep of the baseline case. This figure shows that in the region downstream of the
peak magnetic field ( x > 0.75 m), a long-wavelength mode develops where the elec-
tron temperature and density vary in phase with one another. In the high-density

Fig. 4  a Performance of each main component of the PIC loop on each benchmark case. Data are the
same as in Table 4. b Roofline plot of the performance of the three main kernels of WarpX’s GPU solver on an
H100 GPU for the baseline case (Case 2). L1 and L2 cache bandwidths are shown in addition to that of main
memory. Additionally, we show the thresholds for single-precision (“Single”) and double-precision (“Double”)
FLOPs

Table 5  Recorded wall times for each parameter set

The baseline case parameters are highlighted in grey and the results of the semi-implicit solver are indicated in yellow

Page 15 of 25Marks and Gorodetsky ﻿Journal of Electric Propulsion (2025) 4:34 	

regions of this mode, the particle density may exceed the threshold for resampling.
Resampling leaves the density (and therefore electric field, via Poisson’s equation)
unchanged, but may result in a small spread of the velocity distribution function,
if the particle resolution in these high-density regions is not sufficiently high. This
could then produce the higher electron temperatures observed in the right half of the
domain. In Fig. 7, we show the electron velocity distribution function just upstream
of the cathode line for resampling thresholds of 200 particles per cell, 250 particles
per cell, and the baseline simulation (no resampling). As suggested by the larger elec-
tron temperatures, the VDFs are wider at lower resampling thresholds. This widening
is limited to the axial and azimuthal axes, with the radial VDF remaining Maxwellian.

Fig. 5  Effect of resampling on electron temperature profiles, with resampling thresholds of a 200 particles
per cell, b 250 particles per cell, c 275 particles per cell, and d 300 particles per cell. The light gray and red
regions have the same meanings as in Fig. 3

Fig. 6  a Ion density ( m−3 ) and b electron temperature (eV) of the baseline simulation at the last timestep
( t = 20µs)

Fig. 7  Effect of maximum particles per cell (ppc) on a axial, b radial, and c azimuthal electron velocity
distribution functions

Page 16 of 25Marks and Gorodetsky ﻿Journal of Electric Propulsion (2025) 4:34

In contrast, the axial and azimuthal distribution functions are non-Maxwellian, which
may exacerbate numerical heating during resampling.

Given these results, it seems that resampling should be used with caution, at least in
low-temperature plasmas. While resampling can improve performance significantly,
it risks distorting the higher moments of the particles’ velocity distribution function
and altering the simulation in an unphysical manner if care is not taken to preserve
these moments [29]. As such, the resampling threshold, if one is used, should be set
to a value close to the expected steady-state particle count, so that resampling only
occurs during transient events, provided that the steady-state solution is not depend-
ent on these transients and that the resolution of these transients is not desired.

Sorting interval and multigrid precision

The results in Table 5 demonstrate that more frequent particle sorting typically results
in better simulation performance, with a maximum speed-up of one hour and diminish-
ing returns for sorting intervals below 100 iterations. We also found that that decreasing
the tolerance of the field solver dramatically improved performance. This performance
improvement was very coarse-grained—in the baseline case, the iterative algorithm used
to solve the fields only needed to perform three iterations, on average, to converge on the
requested relative tolerance of 10−5 . Increasing the tolerance to 10−3 decreased the num-
ber of iterations needed to two, and decreasing it to 10−6 increased the iteration count
to four. Further increasing the tolerance to 10−2 had no effect, as two iterations were still
required to converge to within this tolerance. We found that simulations performed at
these higher tolerances were not qualitative or quantitatively different than those per-
formed at lower tolerances and lay within the noise threshold of the PIC method and the
run-to-run variance.

Semi‑implicit solver

Performance

As shown in Table 5, the grid coarsening enabled by the use of the semi-implicit Poisson
solver resulted in dramatic reductions in wall time. The 2x case completed in only 11.5
hours, a 3.5x speedup over the baseline case. The 4x and 8x cases finished even faster, at
4 and 2 hours, respectively. In Fig. 8, we show the results from the 2x, 4x, and 8x semi-
implicit cases.

Fig. 8  a Axial electric field, b plasma density and c electron temperature for the baseline explicit case and
the three semi-implicit cases

Page 17 of 25Marks and Gorodetsky ﻿Journal of Electric Propulsion (2025) 4:34 	

We find that the semi-implicit solver maintains good agreement with the benchmark
up to 4x coarsening, particularly for the electron temperature. As the grid coarsens, the
electric field profile broadens and the peak field decreases, from 50 kV in the baseline
case to 43 kV in the 8x case. The peak plasma density also declines, from 3.6× 1017 m−3
in the baseline case to 3× 1017 m−3 in the 8x case. The electron temperature profile
changes little between the baseline case and the 2x and 4x semi-implicit simulations, but
the peak temperature decreases sharply in the 8x case, going from 52 eV to 44 eV.

In Fig. 9, we quantify the deviation in plasma density, electric field, and electron tem-
perature from the benchmark for the chosen cases, as well as as a function of semi-
implicit factor, timestep, and particle count. We calculate the deviation in a quantity y
from the benchmark value yb as

where y has been interpolated to the same coordinates as yb and values beyond the cath-
ode line at x = 2.4 cm have been ignored.

In all cases, the deviation is less than 25% for the 4x and 8x cases and 10% in the 2x
case, and tends to increases as the grid coarsens. Increasing the semi-implicit factor (C

(10)Deviation =

√

∑

(y − yb)2
∑

y2b
,

Fig. 9  Average deviation from the benchmark in plasma density, electric field, and electron temperature
for different grid spacings, as a function of a-c timestep, d-f semi-implicit factor, and g-i particle count. The
nominal 2x, 4x, and 8x cases from Table 1 are indicated with labels and as hatched bars

Page 18 of 25Marks and Gorodetsky ﻿Journal of Electric Propulsion (2025) 4:34

in Eq. 9) yields better agreement with the benchmark electron temperature at the cost of
worse agreement with the plasma density and electric field. We attribute this to a reduc-
tion in numerical heating. Increasing timestep has little effect on the plasma density and
electric field, but reduces the discrepancy in electron temperature by up to 50% in the 8x
case. In the 2x case, increasing the particle count does appear to yield improved agree-
ment, especially in electron temperature. This likely indicates a reduction in numerical
heating. However, this trend is much less clear in the 4x and 8x cases.

In Fig. 10, we show how the axial ion velocity distribution function (IVDF) changes as
the grid and time resolution are coarsened. We observe excellent agreement in the most
probable velocity across all cases, with the ion acceleration profile becoming modestly
more shallow as the grid coarsens. This makes sense given the reduction in peak electric
field for the coarser cases observed in Fig. 8. Additionally, there is some disagreement
in the near-anode region, particularly in the 8x case (Fig. 10d), as the grid spacing has
grown larger than the anode sheath width in the baseline case. This leads to an expan-
sion of the anode sheath, but does not affect the velocity outside of this region.

Plasma instabilities

To investigate the effect of the semi-implicit method and grid coarsening on the charac-
ter of the global plasma instabilities, we show in Fig. 11 the 2D azimuthal electric field
at the last timestep for each semi-implicit case, as well as for the explicit baseline solu-
tion. Consistent with the benchmark results in Ref. [15], we find that an instability devel-
ops early in the simulation and develops into a azimuthally-propagating wave with two
modes—a short-wavelength mode near the anode and a long-wavelength mode in the
right half of the domain. These basic characteristics of the explicit simulation persist in
the semi-implicit simulations, but the wavelength of the short-wavelength mode gradu-
ally increases as the grid coarsens. We illustrate the changing dominant wavelength and

Fig. 10  Axial ion velocity distribution function for the explicit and semi-implicit cases. In each figure, we
include for comparison the most probable velocity of the explicit case as a white dashed line

Page 19 of 25Marks and Gorodetsky ﻿Journal of Electric Propulsion (2025) 4:34 	

frequency of these instabilities as one moves downstream in Fig. 12, and show the azi-
muthal wavelength spectra for each of the two modes in Fig. 13. The dominant frequen-
cies and wavelengths agree with the benchmark for the 1x and 2x cases. However, the

Fig. 11  Evolution of the azimuthal electric field as the grid is coarsened using the semi-implicit scheme. The
vertical lines indicate x = 0.3 cm and x = 1.75 cm

Fig. 12  Evolution of the a dominant azimuthal wavelength and b dominant azimuthal frequency as a
function of axial location

Fig. 13  Spectra of the azimuthal electric field wavelength at a x = 0.3 cm and b x = 1.75 cm. The dominant
wavelengths from the 2019 benchmark are indicated in gray

Page 20 of 25Marks and Gorodetsky ﻿Journal of Electric Propulsion (2025) 4:34

distinction between the upstream and downstream modes begins to diminish for the 4x
case. In the 8x case, the discrepancy between these modes disappears entirely, and the
same wavelength is dominant across the whole domain. In addition, the maximum azi-
muthal electric field declines by 40% in the 4x case, and 70% in the 8x case.

Given these changes in the character of the global instabilities, we were surprised that
the time-averaged axial electric field remains consistent across all cases, with only a
gradual reduction in peak field strength as the grid is coarsened. As the establishment
and localization of this strongly-peaked electric field is one of the major consequences of
anomalous electron transport in Hall thrusters, our results suggest that the magnitude of
the transport may be relatively insensitive to some of the spectral characteristics of the
azimuthal instability.

Convergence and numerical heating

In Fig. 14, we show the electron current emitted by the cathode and averaged electron
temperature for each case. As in Ref. [15, 30], we use the former as a measure of both
numerical convergence and anomalous transport level. The latter gives an indication of
the degree of numerical heating/cooling, which must be monitored when using implicit
PIC schemes. We find that in the 1x, 2x, and 4x cases, the electron current agrees well
with the benchmark, but falls by a factor of 3 in the 8x case. This likely indicates a reduc-
tion in electron mobility, which makes sense given the reduction in azimuthal electric
field amplitude seen in this case in Fig. 11.

Examining Fig. 14b, we observe a small increase in average electron temperature over
the benchmark value of 2, 2.5, and 1 eV in the 2x, 4x, and 8x cases, respectively. This
amount of numerical heating, while non-negligible, is small and may be difficult to dis-
tinguish from other sources of uncertainty in larger simulations with more self-consist-
ent physics. As shown in Fig. 9i, the amount of numerical heating in the 2x and 4x cases
may be reduced further by increasing the particle count.

Taken together, these results show that Barnes’ semi-implicit method can significantly
reduce the computational cost of Hall thruster simulations while preserving the bulk

Fig. 14  a Cathode current as a fraction of the extracted ion current JM for the 1x, 2x, 4x, and 8x cases. b The
averaged electron temperature in the domain for the same cases. For both plots, the range of values in the
2019 benchmark is indicated in gray

Page 21 of 25Marks and Gorodetsky ﻿Journal of Electric Propulsion (2025) 4:34 	

plasma behavior. In particular, the 2x case yields averaged deviations of less or equal to
than 10% across plasma density, electron temperature, and electric field and preserves
the character of the azimuthal plasma instabilities. Despite the greater speedups seen in
the 4x and 8x cases, their increased deviations from the benchmark of up to 25% and the
observed modification of the wavelength spectra make them difficult to trust for predic-
tive simulations.

We also believe that the potential speedups may be greater than those observed here.
In the 2x case, the GPU needs to do eight times less work than in the explicit case, as it
needs a quarter of the cells and half as many timesteps. Despite this, we only observed a
speedup of 3.5 times over the baseline case. This is likely because the benchmark simula-
tion is relatively small for this GPU, and some amount of its computational cost is purely
overhead. This overhead remains roughly constant and begins to dominate as the work-
load is reduced. For larger simulations, the proportion of work dedicated to this over-
head decreases, and the potential speedups seen from using the semi-implicit method
increase. Three-dimensional simulations should see even larger speedups, as the grid
can be coarsened along an additional dimension.

Scaling analysis of electrostatic solver

One good measure of the how well a parallel code scales to multiple processors is the
strong scaling efficiency, given by

where N is the number of processors and t(N) is the execution (wall) time when running
the code with N processors. The factor t(1)/t(N) gives the speedup, which for a perfectly
parallelizable code is equal to N. The strong scaling efficiency thus measures the fraction
of the ideal speedup that we observe in practice.

In Fig. 15a, we show how the strong scaling efficiency computed at each workload var-
ies as a function of GPU count. For all workloads up to 213 , we measured the strong scal-
ing efficiency with respect to the single-GPU case. For the final case (workload 214 ) we

(11)Strong scaling eff.(N) =
t(1)

Nt(N)
,

Fig. 15  a Strong scaling efficiency for uniform plasma simulations. Markers indicate the workload at which
speedup is equal to one. Dashed lines represent strong scaling efficiency measured with respect to the
2-GPU case, i.e. 2t(2)/Nt(N). b Fraction of wall time spent in inter-process communication for workload 213

Page 22 of 25Marks and Gorodetsky ﻿Journal of Electric Propulsion (2025) 4:34

instead measured it with respect to the 2-GPU case, as the problem could no longer fit in
the memory of a single GPU. We find that while speedups in the electrostatic solver can
be obtained using multiple H100 GPUs, this speedup only becomes relevant for large
workloads. For instance, when running the largest uniform plasma simulation that can
fit in memory on a single H100 (workload 213 ), the speedup is only 1.75. The culprit for
this less-than-ideal scaling behavior is the increased overhead of MPI communication as
the number of GPUs increases.

In Fig. 15b, we plot the fraction of time spent on MPI communication for each GPU
count for workload 213 . We find that the MPI overhead increases with the number of
GPUs, up to 95% in the 32 GPU case. The reason for this increased overhead lies with
Poisson’s equation. Solving Poisson’s equation requires communication across MPI
ranks many times per iteration as smoothing is applied at each level of the multigrid
algorithm. In contrast, updating the electromagnetic fields can be done largely locally
using finite differencing and minimal inter-process communication.

There are a few caveats to these results, however. Scaling studies of this kind are sen-
sitive to the configuration of the systems used to run them, and it is possible that our
results are particular to the specific cluster we used. Additionally, while we found that
the electrostatic solver in particular scaled sub-ideally, we were able to verify that the
particle parts of the code and the electromagnetic solver exhibited excellent scaling, as
previously reported in Ref. [18]. Given that, it might be possible that for certain very
large problems, the electromagnetic solver could outperform the electrostatic solver for
Hall thruster simulations, even though the EM solver must take significantly smaller
timesteps than the ES solver.

Finally, we note that while WarpX’s field solver may not exhibit perfect scaling, other
Poisson solvers for electrostatic PIC applications may be able to perform better. In
particular, the GPU ion thruster plume code CHAOS [13] uses a conjugate-gradient
method to solve Poisson’s equation. This solver, when implemented with careful regard
for the layout of the problem in GPU memory and the amount of MPI communication
required, is reported to yield good strong scaling efficiency up to 128 GPUs.

Role of GPU hardware

The performance on the older Nvidia V100 (3.81 days compared to 1.81 days on the
H100 GPU) is still significantly faster than all but two of the codes in the 2019 bench-
mark. This indicates that at least some of the improvements seen in the explicit simu-
lations this work are due to WarpX’s code architecture and the inherent advantages of
a GPU for PIC simulations. However, the simulation on the H100 was nearly twice as
fast with no change in algorithm or configuration. This result highlights the important
role of increasingly powerful GPU hardware in accelerating kinetic simulations of low-
temperature plasma devices like Hall thrusters.

Despite WarpX’s good benchmark performance across hardware generations, one
major gap in its abilities is lack of support for the reduced-precision and tensor compu-
tations needed to fully exploit newer AI-focused GPUs like the H100 [26]. In particular,
while the H100 PCI-e GPU has a capacity of 34 and 67 teraFLOPS (1012 floating point
operations per second), respectively, for non-tensor double- and single-precision float-
ing point operations, respectively, it can support up to 756 teraFLOPS for TF32 tensor

Page 23 of 25Marks and Gorodetsky ﻿Journal of Electric Propulsion (2025) 4:34 	

operations and 1513 FLOPS for FP16 operations. New algorithms for PIC that can effec-
tively make use of these reduced-precision operations may lead to even more dra-
matic performance improvements. As the demand for increasingly powerful GPUs for
machine learning and artificial intelligence applications increases, it is likely that even
greater speed-ups in particle-in-cell simulations of Hall thrusters will be made possible,
provided the codes can make efficient use of the new hardware.

Kinetic simulations in an engineering context

Combining increases in hardware capabilities with new algorithms for reducing noise
and improving the parallel efficiency of PIC simulations may bring kinetic Hall thruster
simulations down in cost enough to be useful in an engineering contexts. The main chal-
lenge remaining is the long simulation times needed to adequately resolve the dynamics
of real thrusters. Including real ionization, rather than a fixed source term, introduces
breathing mode oscillations which have frequencies on the order of 10 kHz [1]. As such,
simulations that capture these oscillations must run for timescales of ∼ 1 ms, about 50
times longer than the simulation durations in this work. Additionally, recent 3-D parti-
cle-in-cell simulations of Hall thrusters have demonstrated that many important aspects
of the instabilities governing anomalous transport are not well-resolved by 2-D axial azi-
muthal simulations [8]. Even accounting for significant improvements in hardware, these
constraints mean kinetic, whole-device Hall thruster simulations may still require wall
times measuring in the months. However, when accounting for the time needed to build
a thruster, and collect the data necessary to calibrate current non-predictive engineering
models of Hall thrusters [3], it is still possible that kinetic simulations may soon become
usable in engineering applications.

Conclusion
In this work, we have demonstrated the applicability of the open source particle-in-cell
code WarpX for kinetic Hall thruster simulations. To do this, we simulated the well-
known 2-D axial azimuthal benchmark of Charoy et al., and found that the results we
obtained agreed satisfactorily with those previously published. Next, we investigated the
impact of a variety of numerical parameters on the simulation performance and physics.
We found that while resampling particles in regions of high densities has the potential to
significantly speed up simulations, the method employed here appears to produce un-
physical particle heating when the resampling threshold is too low. Therefore, this tech-
nique must be applied with care. In comparison to the effect of resampling, the precision
of the multigrid Poisson solver had little impact on the physical output of the simula-
tion. The performance implications of the particle sorting interval were relatively minor,
with slightly better performance seen at shorter sorting intervals. However, reducing the
Poisson solver relative tolerance from 10−5 to 10−3 accelerated the simulation by about
13%, or 5 hours, with no visible impact on solution quality. We then demonstrated the
impact of recent improvements in GPU hardware by performing one simulation on an
older Nvidia V100 GPU. This simulation took over twice as long to complete as our
baseline simulation, which used a newer Nvidia H100.

We then assessed a semi-implicit formulation of Poisson’s equation recently imple-
mented into WarpX. Our simulations using this scheme used far fewer grid cells than

Page 24 of 25Marks and Gorodetsky ﻿Journal of Electric Propulsion (2025) 4:34

our baseline case and longer timesteps. The results of these simulations showed good
agreement with the benchmark when using cell sizes and timesteps up to four times
longer than the baseline case. In this case, the simulation completed in just four hours.
Simulations performed at even coarser grid resolutions were stable and showed qualita-
tive, albeit worsened, agreement with the benchmark. These results show that this solver
is capable of producing dramatic reductions in computational cost and time with only
minor losses in fidelity.

Finally, we assessed the scalability of the WarpX’s electrostatic solver across multi-
ple GPUs on a uniform plasma test case. We found that increasing the GPU count does
yield speedups for problems that saturate a single GPU, but the parallel efficiency was
less than desired. We attribute this inefficiency to the large amount of MPI data-trans-
fer incurred by the multigrid Poisson solver, and found that the other parts of the code
scaled well to arbitrary computational resources.

As WarpX is an open source code, this work provides a common baseline for research-
ers to compare to and expand upon. Our results highlight the potential of advancements
in GPU hardware for accelerating kinetic simulations of Hall thrusters and similar low-
temperature plasma devices and suggests that such simulations could soon be viable for
use in certain engineering contexts.
Acknowledgements
This work was funded by Los Alamos National Laboratories under the project “Algorithm/Software/Hardware Co-design
for High Energy Density applications” at the University of Michigan, and used computing resources provided by an
AFOSR DURIP under Program Manager Dr. Fariba Fahroo and grant number FA9550-23-1-006. The authors acknowledge
additional computational resources and support provided by Advanced Research Computing, a division of Information
and Technology Services at the University of Michigan. Lastly, we would like to acknowledge the WarpX developers and
community for their assistance at many stages in this work. In particular, we would like to highlight Roelof Groenewald
for his work implementing the semi-implicit electrostatic solver into WarpX.

Authors’ contributions
T.M. helped develop the ideas, programmed and ran the simulations, analyzed the data, and wrote the manuscript. A.G.
secured funding, helped develop the ideas, and reviewed the manuscript.

Data availability
WarpX is an open-source code, available on Github at https://​github.​com/​BLAST-​WarpX/​warpx. Our simulations were run
on version 24.05 through 25.02. The scripts used to run and analyze the simulations in this work are available on Github
at https://​github.​com/​arche​rmarx/​warpx-​hall.

Declarations

Competing interests
The authors declare no competing interests.

Received: 20 December 2024 Accepted: 28 April 2025

References
	1.	 Boeuf JP (2017) Tutorial: Physics and modeling of Hall thrusters. J Appl Phys 121:011101. https://​doi.​org/​10.​1063/1.​

49722​69
	2.	 Mikellides IG, Ortega AL (2019) Challenges in the development and verification of first-principles models in Hall-

effect thruster simulations that are based on anomalous resistivity and generalized Ohm’s law. Plasma Sources Sci
Technol 28:48. https://​doi.​org/​10.​1088/​1361-​6595/​aae63b

	3.	 Marks TA, Jorns BA (2023) Challenges with the self-consistent implementation of closure models for anomalous
electron transport in fluid simulations of H all thrusters. Plasma Sources Sci Technol 32(4):045016. https://​doi.​org/​10.​
1088/​1361-​6595/​accd18

	4.	 Cappelli MA, Young CV, Cha E, Fernandez E (2015) A zero-equation turbulence model for two-dimensional hybrid
Hall thruster simulations. Phys Plasmas 22. https://​doi.​org/​10.​1063/1.​49358​91

	5.	 Lafleur T, Baalrud SD, Chabert P (2016) Theory for the anomalous electron transport in Hall effect thrusters. II. Kinetic
model. Phys Plasmas 23:11101. https://​doi.​org/​10.​1063/1.​49484​96

https://github.com/BLAST-WarpX/warpx
https://github.com/archermarx/warpx-hall
https://doi.org/10.1063/1.4972269
https://doi.org/10.1063/1.4972269
https://doi.org/10.1088/1361-6595/aae63b
https://doi.org/10.1088/1361-6595/accd18
https://doi.org/10.1088/1361-6595/accd18
https://doi.org/10.1063/1.4935891
https://doi.org/10.1063/1.4948496

Page 25 of 25Marks and Gorodetsky ﻿Journal of Electric Propulsion (2025) 4:34 	

	6.	 Jorns B (2018) Predictive, data-driven model for the anomalous electron collision frequency in a Hall effect thruster.
Plasma Sources Sci Technol 27:104007. https://​doi.​org/​10.​1088/​1361-​6595/​aae472

	7.	 Marks TA, Jorns BA (2023) Evaluation of algebraic models of anomalous transport in a multi-fluid Hall thruster code.
J Appl Phys 134(15):153301. https://​doi.​org/​10.​1063/5.​01718​24

	8.	 Villafana W, Cuenot B, Vermorel O (2023) 3-D particle-in-cell study of the electron drift instability in a Hall thruster
using unstructured grids. Phys Plasmas 30:033503. https://​doi.​org/​10.​1063/5.​01339​63

	9.	 Vay JL, Huebl A, Almgren A, Amorim LD, Bell J, Fedeli L, Ge L, Gott K, Grote DP, Hogan M, Jambunathan R, Lehe R,
Myers A, Ng C, Rowan M, Shapoval O, Thévenet M, Vincenti H, Yang E, Zaïm N, Zhang W, Zhao Y, Zoni E (2021) Mod-
eling of a chain of three plasma accelerator stages with the warpx electromagnetic pic code on gpus. Phys Plasmas
28(2):023105. https://​doi.​org/​10.​1063/5.​00285​12

	10.	 Farber R (2022) WDMApp - the first simulation software in fusion history to couple tokamak core to edge phys-
ics. https://​www.​exasc​alepr​oject.​org/​highl​ight/​wdmapp/. Accessed 6 Jan 2025.

	11.	 Fedeli L, Huebl A, Boillod-Cerneux F, Clark T, Gott K, Hillairet C, Jaure S, Leblanc A, Lehe R, Myers A, Piechurski C, Sato
M, Zaim N, Zhang W, Vay JL, Vincenti H (2022) Pushing the frontier in the design of laser-based electron accelerators
with groundbreaking mesh-refined particle-in-cell simulations on exascale-class supercomputers. In: SC22: Interna-
tional Conference for High Performance Computing, Networking, Storage and Analysis. pp 1–12. https://​doi.​org/​10.​
1109/​SC414​04.​2022.​00008

	12.	 Fierro A, Dickens J, Neuber A (2014) Graphics processing unit accelerated three-dimensional model for the simula-
tion of pulsed low-temperature plasmas. Phys Plasmas 21(12):123504. https://​doi.​org/​10.​1063/1.​49033​30

	13.	 Jambunathan R, Levin DA (2018) CHAOS: An octree-based PIC-DSMC code for modeling of electron kinetic proper-
ties in a plasma plume using MPI-CUDA parallelization. J Comput Phys 373:571–604. https://​doi.​org/​10.​1016/j.​jcp.​
2018.​07.​005

	14.	 Vay JL, Almgren A, Bell J, Ge L, Grote D, Hogan M, Kononenko O, Lehe R, Myers A, Ng C, Park J, Ryne R, Shapoval
O, Thévenet M, Zhang W (2018) Warp-X: A new exascale computing platform for beam-plasma simulations. Nucl
Instrum Methods Phys Res Sect A Accelerators Spectrometers Detectors Assoc Equip 909:476–479. https://​doi.​org/​
10.​1016/j.​nima.​2018.​01.​035

	15.	 Charoy T, Boeuf JP, Bourdon A, Carlsson JA, Chabert P, Cuenot B, Eremin D, Garrigues L, Hara K, Kaganovich ID, Powis
AT, Smolyakov A, Sydorenko D, Tavant A, Vermorel O, Villafana W (2019) 2-D axial-azimuthal particle-in-cell bench-
mark for low-temperature partially magnetized plasmas. Plasma Sources Sci Technol 28(10):105010. https://​doi.​org/​
10.​1088/​1361-​6595/​ab46c5

	16.	 Marks TA, Gorodetsky AA (2024) Hall thruster simulations in WarpX. In: 38th International Electric Propulsion Confer-
ence, Toulouse, France. IEPC paper #409. https://​doi.​org/​10.​7302/​23491

	17.	 Boeuf JP, Smolyakov A (2019) Landmark plasma test cases. https://​jpb911.​wixsi​te.​com/​landm​ark/​test-​cases.
Accessed 2 Dec 2024

	18.	 Myers A, Almgren A, Amorim L, Bell J, Fedeli L, Ge L, Gott K, Grote D, Hogan M, Huebl A, Jambunathan R, Lehe R,
Ng C, Rowan M, Shapoval O, Thévenet M, Vay JL, Vincenti H, Yang E, Zaïm N, Zhang W, Zhao Y, Zoni E (2021) Porting
WarpX to GPU-accelerated platforms. Parallel Comput 108:102833. https://​doi.​org/​10.​1016/j.​parco.​2021.​102833

	19.	 Lewis H (1970) Energy-conserving numerical approximations for vlasov plasmas. J Comput Phys 6(1):136–141.
https://​doi.​org/​10.​1016/​0021-​9991(70)​90012-4

	20.	 Sun H, Banerjee S, Sharma S, Powis AT, Khrabrov AV, Sydorenko D, Chen J, Kaganovich ID (2023) Direct implicit and
explicit energy-conserving particle-in-cell methods for modeling of capacitively coupled plasma devices. Phys
Plasmas 30(10):103509. https://​doi.​org/​10.​1063/5.​01608​53

	21.	 Tyushev M, Papahn Zadeh M, Chopra NS, Raitses Y, Romadanov I, Likhanskii A, Fubiani G, Garrigues L, Groenewald R,
Smolyakov A (2025) Mode transitions and spoke structures in e × b penning discharge. Phys Plasmas 32(1):013511.
https://​doi.​org/​10.​1063/5.​02385​77

	22.	 Muraviev A, Bashinov A, Efimenko E, Volokitin V, Meyerov I, Gonoskov A (2021) Strategies for particle resampling in
PIC simulations. Comput Phys Commun 262:107826. https://​doi.​org/​10.​1016/j.​cpc.​2021.​107826

	23.	 Barnes DC (2021) Improved C1 shape functions for simplex meshes. J Comput Phys 424:109852. https://​doi.​org/​10.​
1016/j.​jcp.​2020.​109852

	24.	 Groenewald R, Barnes DC, Tyushev M, Zhang W, Huebl A, Necas A, Smolyakov A, Vay JL, Tajima T, Dettrick S (2024)
New semi-implicit electrostatic particle-in-cell method to extend scope of the exascale WarpX code. In: The Inter-
national Conference for High Performance Computing, Networking, Storage, and Analysis (SC24). https://​sc24.​super​
compu​ting.​org/​proce​edings/​poster/​poster_​pages/​post2​33.​html. Accessed 6 Jan 2025.

	25.	 Langdon A, Cohen BI, Friedman A (1983) Direct implicit large time-step particle simulation of plasmas. J Comput
Phys 51(1):107–138. https://​doi.​org/​10.​1016/​0021-​9991(83)​90083-9

	26.	 Nvidia Corporation (2024) NVIDIA H100 Tensor Core GPU Datasheet. Nvidia Corporation. https://​resou​rces.​nvidia.​
com/​en-​us-​tensor-​core/​nvidia-​tensor-​core-​gpu-​datas​heet. Accessed 18 Jun 2024

	27.	 Nvidia Corporation (2020) NVIDIA V100 Tensor Core GPU Datasheet. Nvidia Corporation. https://​images.​nvidia.​com/​
conte​nt/​techn​ologi​es/​volta/​pdf/​volta-​v100-​datas​heet-​update-​us-​11653​01-​r5.​pdf. Accessed 18 Jun 2024

	28.	 Nvidia Corporation (2024) NVIDIA A100 Tensor Core GPU Datasheet. Nvidia Corporation. https://​www.​nvidia.​com/​
conte​nt/​dam/​en-​zz/​Solut​ions/​Data-​Center/​a100/​pdf/​nvidia-​a100-​datas​heet-​nvidia-​us-​21885​04-​web.​pdf. Accessed
18 Jun 2024

	29.	 Faghihi D, Carey V, Michoski C, Hager R, Janhunen S, Chang C, Moser R (2020) Moment preserving constrained
resampling with applications to particle-in-cell methods. J Comput Phys 409:109317. https://​doi.​org/​10.​1016/j.​jcp.​
2020.​109317

	30.	 Boeuf JP, Garrigues L (2018) E × B electron drift instability in Hall thrusters: Particle-in-cell simulations vs. theory. Phys
Plasmas 25:061204. https://​doi.​org/​10.​1063/1.​50170​33

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1088/1361-6595/aae472
https://doi.org/10.1063/5.0171824
https://doi.org/10.1063/5.0133963
https://doi.org/10.1063/5.0028512
https://www.exascaleproject.org/highlight/wdmapp/
https://doi.org/10.1109/SC41404.2022.00008
https://doi.org/10.1109/SC41404.2022.00008
https://doi.org/10.1063/1.4903330
https://doi.org/10.1016/j.jcp.2018.07.005
https://doi.org/10.1016/j.jcp.2018.07.005
https://doi.org/10.1016/j.nima.2018.01.035
https://doi.org/10.1016/j.nima.2018.01.035
https://doi.org/10.1088/1361-6595/ab46c5
https://doi.org/10.1088/1361-6595/ab46c5
https://doi.org/10.7302/23491
https://jpb911.wixsite.com/landmark/test-cases
https://doi.org/10.1016/j.parco.2021.102833
https://doi.org/10.1016/0021-9991(70)90012-4
https://doi.org/10.1063/5.0160853
https://doi.org/10.1063/5.0238577
https://doi.org/10.1016/j.cpc.2021.107826
https://doi.org/10.1016/j.jcp.2020.109852
https://doi.org/10.1016/j.jcp.2020.109852
https://sc24.supercomputing.org/proceedings/poster/poster_pages/post233.html
https://sc24.supercomputing.org/proceedings/poster/poster_pages/post233.html
https://doi.org/10.1016/0021-9991(83)90083-9
https://resources.nvidia.com/en-us-tensor-core/nvidia-tensor-core-gpu-datasheet
https://resources.nvidia.com/en-us-tensor-core/nvidia-tensor-core-gpu-datasheet
https://images.nvidia.com/content/technologies/volta/pdf/volta-v100-datasheet-update-us-1165301-r5.pdf
https://images.nvidia.com/content/technologies/volta/pdf/volta-v100-datasheet-update-us-1165301-r5.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/a100/pdf/nvidia-a100-datasheet-nvidia-us-2188504-web.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/a100/pdf/nvidia-a100-datasheet-nvidia-us-2188504-web.pdf
https://doi.org/10.1016/j.jcp.2020.109317
https://doi.org/10.1016/j.jcp.2020.109317
https://doi.org/10.1063/1.5017033

	GPU-accelerated kinetic Hall thruster simulations in WarpX
	Abstract
	Introduction
	Methods
	Benchmark simulation
	Extending WarpX for Hall thruster simulations
	Extensions for benchmark simulations

	Simulation outputs
	Parameter investigation
	Summary of simulation parameters
	Scaling

	Results
	Benchmark simulations
	Effect of resampling
	Sorting interval and multigrid precision
	Semi-implicit solver
	Performance
	Plasma instabilities
	Convergence and numerical heating

	Scaling analysis of electrostatic solver
	Role of GPU hardware
	Kinetic simulations in an engineering context

	Conclusion
	Acknowledgements
	References

